BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 30632175)

  • 1. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focusing and alignment of erythrocytes in a viscoelastic medium.
    Go T; Byeon H; Lee SJ
    Sci Rep; 2017 Jan; 7():41162. PubMed ID: 28117428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric impedance microflow cytometry for characterization of cell disease states.
    Du E; Ha S; Diez-Silva M; Dao M; Suresh S; Chandrakasan AP
    Lab Chip; 2013 Oct; 13(19):3903-3909. PubMed ID: 23925122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elasto-inertial particle focusing in sinusoidal microfluidic channels.
    Chen D; Huang Q; Ni Z; Xiang N
    Electrophoresis; 2024 May; ():. PubMed ID: 38813845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis.
    Lim EJ; Ober TJ; Edd JF; McKinley GH; Toner M
    Lab Chip; 2012 Jun; 12(12):2199-210. PubMed ID: 22382737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids.
    Ni C; Jiang D
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 33007973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput viscoelastic characterization of cells in hyperbolic microchannels.
    Reichel F; Goswami R; Girardo S; Guck J
    Lab Chip; 2024 Apr; 24(9):2440-2453. PubMed ID: 38600866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology, repulsion, and ordering of red blood cells in viscoelastic flows under confinement.
    Recktenwald SM; Rashidi Y; Graham I; Arratia PE; Del Giudice F; Wagner C
    Soft Matter; 2024 Jun; 20(25):4950-4963. PubMed ID: 38873747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation.
    Tanriverdi S; Cruz J; Habibi S; Amini K; Costa M; Lundell F; Mårtensson G; Brandt L; Tammisola O; Russom A
    Microsyst Nanoeng; 2024; 10():87. PubMed ID: 38919163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device.
    Guillou L; Dahl JB; Lin JG; Barakat AI; Husson J; Muller SJ; Kumar S
    Biophys J; 2016 Nov; 111(9):2039-2050. PubMed ID: 27806284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.
    Mansor MA; Ahmad MR; Petrů M; Rahimian Koloor SS
    Artif Cells Nanomed Biotechnol; 2023 Dec; 51(1):371-383. PubMed ID: 37548425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications.
    Dak P; Ebrahimi A; Alam MA
    Lab Chip; 2014 Jul; 14(14):2469-79. PubMed ID: 24850073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms.
    Páez-Avilés C; Juanola-Feliu E; Punter-Villagrasa J; Del Moral Zamora B; Homs-Corbera A; Colomer-Farrarons J; Miribel-Català PL; Samitier J
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-Streams Focusing-Based Cell Separation in High Viscoelasticity Flow.
    Feng H; Patel D; Magda JJ; Geher S; Sigala PA; Gale BK
    ACS Omega; 2022 Nov; 7(45):41759-41767. PubMed ID: 36406492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic devices powered by integrated elasto-magnetic pumps.
    Binsley JL; Martin EL; Myers TO; Pagliara S; Ogrin FY
    Lab Chip; 2020 Nov; 20(22):4285-4295. PubMed ID: 33094306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optics-Free, Non-Contact Measurements of Fluids, Bubbles, and Particles in Microchannels Using Metallic Nano-Islands on Graphene.
    Dhong C; Edmunds SJ; Ramírez J; Kayser LV; Chen F; Jokerst JV; Lipomi DJ
    Nano Lett; 2018 Aug; 18(8):5306-5311. PubMed ID: 30024767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelasticity of diverse biological samples quantified by Acoustic Force Microrheology (AFMR).
    Bergamaschi G; Taris KH; Biebricher AS; Seymonson XMR; Witt H; Peterman EJG; Wuite GJL
    Commun Biol; 2024 Jun; 7(1):683. PubMed ID: 38834871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic transient of confined red blood cells.
    Prado G; Farutin A; Misbah C; Bureau L
    Biophys J; 2015 May; 108(9):2126-36. PubMed ID: 25954871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single-Cell Mass Spectrometry.
    Zhu J; Pan S; Chai H; Zhao P; Feng Y; Cheng Z; Zhang S; Wang W
    Small; 2024 Jun; 20(26):e2310700. PubMed ID: 38483007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration-polarization electroosmosis for particle fractionation.
    Fernández-Mateo R; García-Sánchez P; Ramos A; Morgan H
    Lab Chip; 2024 May; 24(11):2968-2974. PubMed ID: 38726642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.