These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3063242)

  • 1. Surface modification for improved blood compatibility.
    Jacobs H; Grainger D; Okano T; Kim SW
    Artif Organs; 1988 Dec; 12(6):506-7. PubMed ID: 3063242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of nonthrombogenic polymer surfaces for blood-contacting medical devices.
    Kim SW; Jacobs H
    Blood Purif; 1996; 14(5):357-72. PubMed ID: 8894131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces.
    Nojiri C; Okano T; Jacobs HA; Park KD; Mohammad SF; Olsen DB; Kim SW
    J Biomed Mater Res; 1990 Sep; 24(9):1151-71. PubMed ID: 2211743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis.
    Luu CH; Nguyen NT; Ta HT
    Adv Healthc Mater; 2024 Jan; 13(1):e2301039. PubMed ID: 37725037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface properties and blood compatibility of polyurethaneureas.
    Grasel TG; Cooper SL
    Biomaterials; 1986 Sep; 7(5):315-28. PubMed ID: 3778991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Modifying Polymers for Blood-Contacting Polymeric Biomaterials.
    Lim CM; Li MX; Joung YK
    Adv Exp Med Biol; 2020; 1250():189-198. PubMed ID: 32601946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces.
    Knetsch ML; Koole LH
    J Biomed Mater Res A; 2010 Apr; 93(1):77-85. PubMed ID: 19484771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility.
    Khandwekar AP; Patil DP; Shouche Y; Doble M
    J Biomater Appl; 2011 Aug; 26(2):227-52. PubMed ID: 20511382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface.
    Nie S; Xue J; Lu Y; Liu Y; Wang D; Sun S; Ran F; Zhao C
    Colloids Surf B Biointerfaces; 2012 Dec; 100():116-25. PubMed ID: 22763005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved in vitro blood compatibility of polycaprolactone nanowire surfaces.
    Leszczak V; Popat KC
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15913-24. PubMed ID: 25184556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic-hydrophobic microdomain surfaces having an ability to suppress platelet aggregation and their in vitro antithrombogenicity.
    Okano T; Aoyagi T; Kataoka K; Abe K; Sakurai Y; Shimada M; Shinohara I
    J Biomed Mater Res; 1986 Sep; 20(7):919-27. PubMed ID: 3760008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion.
    Zhang L; Casey B; Galanakis DK; Marmorat C; Skoog S; Vorvolakos K; Simon M; Rafailovich MH
    Acta Biomater; 2017 May; 54():164-174. PubMed ID: 28263863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPUU-PEO-heparin graft copolymer surfaces. Patency and platelet deposition in canine small diameter arterial grafts.
    Kim WG; Park KD; Mohammad SF; Kim SW
    ASAIO Trans; 1991; 37(3):M148-9. PubMed ID: 1751086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behavior of three different types of materials in vitro and in the dynamic physiological environment: review and analyses of critical parameters.
    Bruck SD
    Int J Artif Organs; 1979 Jan; 2(1):31-4. PubMed ID: 500239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept.
    Kim YH; Han DK; Park KD; Kim SH
    Biomaterials; 2003 Jun; 24(13):2213-23. PubMed ID: 12699657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces.
    Knetsch ML; Aldenhoff YB; Koole LH
    Biomaterials; 2006 May; 27(14):2813-9. PubMed ID: 16427694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility.
    Wang YX; Robertson JL; Spillman WB; Claus RO
    Pharm Res; 2004 Aug; 21(8):1362-73. PubMed ID: 15359570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.