These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3063242)

  • 21. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices.
    Frost MC; Reynolds MM; Meyerhoff ME
    Biomaterials; 2005 May; 26(14):1685-93. PubMed ID: 15576142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocompatibility of polysulfone II. Platelet adhesion and cho cell growth.
    Khang G; Jeong BJ; Lee HB; Park JB
    Biomed Mater Eng; 1995; 5(4):259-73. PubMed ID: 8785510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood compatibility of SPUU-PEO-heparin graft copolymers.
    Park KD; Kim WG; Jacobs H; Okano T; Kim SW
    J Biomed Mater Res; 1992 Jun; 26(6):739-56. PubMed ID: 1527098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heparin immobilization onto segmented polyurethane-urea surfaces--effect of hydrophilic spacers.
    Park KD; Okano T; Nojiri C; Kim SW
    J Biomed Mater Res; 1988 Nov; 22(11):977-92. PubMed ID: 3241011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Introduction of surface functional groups onto biomaterials by glow discharges.
    Sharma CP; Jayasree G; Najeeb PP
    J Biomater Appl; 1987 Oct; 2(2):205-18. PubMed ID: 3504972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Haemocompatibility testing of biomaterials using human platelets.
    Jung F; Braune S; Lendlein A
    Clin Hemorheol Microcirc; 2013; 53(1-2):97-115. PubMed ID: 22954639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of blood compatibility on polysulfone-polyvinylpyrrolidone blend films as a model membrane of dialyzer by physical adsorption of recombinant soluble human thrombomodulin (ART-123).
    Omichi M; Matsusaki M; Maruyama I; Akashi M
    J Biomater Sci Polym Ed; 2012; 23(5):593-608. PubMed ID: 21310110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved blood compatibility of drawn polyamide sheets.
    Tanaka H; Mori H; Nitta KH; Terano M; Yui N
    J Biomater Sci Polym Ed; 1996; 8(3):211-24. PubMed ID: 8996694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility.
    Liu P; Chen Q; Yuan B; Chen M; Wu S; Lin S; Shen J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3865-74. PubMed ID: 23910289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward new biomaterials.
    Montdargent B; Letourneur D
    Infect Control Hosp Epidemiol; 2000 Jun; 21(6):404-10. PubMed ID: 10879573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes.
    Poussard L; Burel F; Couvercelle JP; Merhi Y; Tabrizian M; Bunel C
    Biomaterials; 2004 Aug; 25(17):3473-83. PubMed ID: 15020121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic protein adsorption at the polyurethane copolymer/water interface.
    Yaseen M; Salacinski HJ; Seifalian AM; Lu JR
    Biomed Mater; 2008 Sep; 3(3):034123. PubMed ID: 18765894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blood compatibility of surfaces modified by plasma polymerization.
    Yeh YS; Iriyama Y; Matsuzawa Y; Hanson SR; Yasuda H
    J Biomed Mater Res; 1988 Sep; 22(9):795-818. PubMed ID: 3220845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell membrane-mimicking coating for blood-contacting polyurethanes.
    Butruk-Raszeja B; Trzaskowski M; Ciach T
    J Biomater Appl; 2015 Jan; 29(6):801-12. PubMed ID: 25234122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of extruded poly(tetramethylene oxide)-polyurethane block copolymers for blood-contacting applications.
    Grasel TG; Pitt WG; Murthy KD; McCoy TJ; Cooper SL
    Biomaterials; 1987 Sep; 8(5):329-40. PubMed ID: 3676419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Negative cilia concept for thromboresistance: synergistic effect of PEO and sulfonate groups grafted onto polyurethanes.
    Han DK; Jeong SY; Kim YH; Min BG; Cho HI
    J Biomed Mater Res; 1991 May; 25(5):561-75. PubMed ID: 1869574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.
    Solouk A; Cousins BG; Mirahmadi F; Mirzadeh H; Nadoushan MR; Shokrgozar MA; Seifalian AM
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():400-8. PubMed ID: 25492004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation.
    Ko YG; Kim YH; Park KD; Lee HJ; Lee WK; Park HD; Kim SH; Lee GS; Ahn DJ
    Biomaterials; 2001 Aug; 22(15):2115-23. PubMed ID: 11432591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of implant surface chemistry upon arterial thrombosis.
    van Kampen CL; Gibbons DF
    J Biomed Mater Res; 1979 Jul; 13(4):517-41. PubMed ID: 457704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.