These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30632577)

  • 21. Linear and nonlinear thermoelectric transport in a quantum spin Hall insulators coupled with a nanomagnet.
    Wang R; Liao H; Song CY; Tang GH; Yang NX
    Sci Rep; 2022 Jul; 12(1):12048. PubMed ID: 35835824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning the thermoelectric properties of a single-molecule junction by mechanical stretching.
    Torres A; Pontes RB; da Silva AJ; Fazzio A
    Phys Chem Chem Phys; 2015 Feb; 17(7):5386-92. PubMed ID: 25612893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structural and bonding evolution in cysteine-gold cluster complexes.
    Zhao Y; Zhou F; Zhou H; Su H
    Phys Chem Chem Phys; 2013 Feb; 15(5):1690-8. PubMed ID: 23247849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Conformational analysis of cysteine-containing peptides and prospects of their application to 213Bi chelating in antitumor therapy].
    Gogitidze TV; Demushkin VP; Zhavoronkova EV; Kopytov VV; Marchenkov NS
    Bioorg Khim; 2006; 32(3):268-75. PubMed ID: 16808169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermoelectric properties of heavy fermion CeRhIn
    Yazdani-Kachoei M; Jalali-Asadabadi S
    RSC Adv; 2019 Nov; 9(62):36182-36197. PubMed ID: 35540618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ba
    Zhang X; Zhang Y; Wu L; Tsuruta A; Mikami M; Cho HJ; Ohta H
    ACS Appl Mater Interfaces; 2022 Jul; 14(29):33355-60. PubMed ID: 35819907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermoelectric efficiency in nanojunctions: a comparison between atomic junctions and molecular junctions.
    Liu YS; Chen YR; Chen YC
    ACS Nano; 2009 Nov; 3(11):3497-504. PubMed ID: 19888717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermoelectric Performance of 2D Tellurium with Accumulation Contacts.
    Qiu G; Huang S; Segovia M; Venuthurumilli PK; Wang Y; Wu W; Xu X; Ye PD
    Nano Lett; 2019 Mar; 19(3):1955-1962. PubMed ID: 30753783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermo-Electric Properties of Cu and Ni Nanoparticles Packed Beds.
    Lin ZZ; Huang CL; Huang Z
    J Nanosci Nanotechnol; 2018 May; 18(5):3413-3418. PubMed ID: 29442846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Significantly Enhanced Thermoelectric Performance of Graphene through Atomic-Scale Defect Engineering via Mobile Hot-Wire Chemical Vapor Deposition Systems.
    Choi M; Novak TG; Byen J; Lee H; Baek J; Hong S; Kim K; Song J; Shin H; Jeon S
    ACS Appl Mater Interfaces; 2021 May; 13(20):24304-24313. PubMed ID: 33983698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties.
    Tran VT; Saint-Martin J; Dollfus P; Volz S
    Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermoelectrics in an array of molecular junctions.
    Müller KH
    J Chem Phys; 2008 Jul; 129(4):044708. PubMed ID: 18681671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultralow lattice thermal conductivity and dramatically enhanced thermoelectric properties of monolayer InSe induced by an external electric field.
    Chang Z; Yuan K; Sun Z; Zhang X; Gao Y; Qin G; Tang D
    Phys Chem Chem Phys; 2021 Jun; 23(24):13633-13646. PubMed ID: 34116567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulation and oxidative catalytic inactivation of thermolysin by copper.Cys-Gly-His-Lys.
    Gokhale NH; Bradford S; Cowan JA
    J Biol Inorg Chem; 2007 Sep; 12(7):981-7. PubMed ID: 17618468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: absolute rate constants derived from pulse radiolysis and laser flash photolysis.
    Nauser T; Casi G; Koppenol WH; Schöneich C
    J Phys Chem B; 2008 Nov; 112(47):15034-44. PubMed ID: 18973367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peierls distortion as a route to high thermoelectric performance in In(4)Se(3-delta) crystals.
    Rhyee JS; Lee KH; Lee SM; Cho E; Kim SI; Lee E; Kwon YS; Shim JH; Kotliar G
    Nature; 2009 Jun; 459(7249):965-8. PubMed ID: 19536260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications.
    Nozariasbmarz A; Krasinski JS; Vashaee D
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.