These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30632584)

  • 1. Micro/nanomachines: what is needed for them to become a real force in cancer therapy?
    Reinišová L; Hermanová S; Pumera M
    Nanoscale; 2019 Apr; 11(14):6519-6532. PubMed ID: 30632584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors.
    Wan M; Li T; Chen H; Mao C; Shen J
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13158-13176. PubMed ID: 33145879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems.
    Wang H; Dai T; Zhou S; Huang X; Li S; Sun K; Zhou G; Dou H
    Sci Rep; 2017 Jan; 7():40011. PubMed ID: 28071743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-based anticancer nanosystem and its biosafety evaluation using a zebrafish model.
    Liu CW; Xiong F; Jia HZ; Wang XL; Cheng H; Sun YH; Zhang XZ; Zhuo RX; Feng J
    Biomacromolecules; 2013 Feb; 14(2):358-66. PubMed ID: 23286342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double layered hydroxides as potential anti-cancer drug delivery agents.
    Riaz U; Ashraf SM
    Mini Rev Med Chem; 2013 Apr; 13(4):522-9. PubMed ID: 23170959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in bio-hybrid nanostructures with anti-pathogenic activity.
    Huang KS; Chang SC; Yang CH; Wang CY
    Curr Med Chem; 2014; 21(29):3323-32. PubMed ID: 24606504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells.
    Cao N; Cheng D; Zou S; Ai H; Gao J; Shuai X
    Biomaterials; 2011 Mar; 32(8):2222-32. PubMed ID: 21186059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic micro/nanomotors in drug delivery.
    Gao W; Wang J
    Nanoscale; 2014 Sep; 6(18):10486-94. PubMed ID: 25096021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect.
    Wiradharma N; Tong YW; Yang YY
    Biomaterials; 2009 Jun; 30(17):3100-9. PubMed ID: 19342093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Size-Tunable Hollow Polypyrrole Nanostructures and Their Assembly into Folate-Targeting and pH-Responsive Anticancer Drug-Delivery Agents.
    Chen J; Li X; Sun Y; Hu Y; Peng Y; Li Y; Yin G; Liu H; Xu J; Zhong S
    Chemistry; 2017 Dec; 23(68):17279-17289. PubMed ID: 28913948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery.
    Joo JY; Park GY; An SS
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):101-11. PubMed ID: 26366073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA origami as an in vivo drug delivery vehicle for cancer therapy.
    Zhang Q; Jiang Q; Li N; Dai L; Liu Q; Song L; Wang J; Li Y; Tian J; Ding B; Du Y
    ACS Nano; 2014 Jul; 8(7):6633-43. PubMed ID: 24963790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature.
    Villa K; Pumera M
    Chem Soc Rev; 2019 Oct; 48(19):4966-4978. PubMed ID: 31368460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP responsive DNA nanogels grown on biocompatible branches for anticancer drug delivery.
    Zhao M; Zhang Y; Yuan S; Xu X; Wu Z; Wu Z; Qi X
    Soft Matter; 2019 May; 15(18):3655-3658. PubMed ID: 31012474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Supramolecular Approach to Nanoscale Motion: Polymersome-Based Self-Propelled Nanomotors.
    Ortiz-Rivera I; Mathesh M; Wilson DA
    Acc Chem Res; 2018 Sep; 51(9):1891-1900. PubMed ID: 30179450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recoverable Bismuth-Based Microrobots: Capture, Transport, and On-Demand Release of Heavy Metals and an Anticancer Drug in Confined Spaces.
    Beladi-Mousavi SM; Khezri B; Krejčová L; Heger Z; Sofer Z; Fisher AC; Pumera M
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13359-13369. PubMed ID: 30925065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.
    Piktel E; Niemirowicz K; Wątek M; Wollny T; Deptuła P; Bucki R
    J Nanobiotechnology; 2016 May; 14(1):39. PubMed ID: 27229857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on applications of nanostructured drug delivery systems in cancer therapy: a review.
    Aberoumandi SM; Mohammadhosseini M; Abasi E; Saghati S; Nikzamir N; Akbarzadeh A; Panahi Y; Davaran S
    Artif Cells Nanomed Biotechnol; 2017 Sep; 45(6):1-11. PubMed ID: 27632797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversion of multidrug resistance in tumor by biocompatible nanomaterials.
    Zhang H; Jiang H; Wang X; Chen B
    Mini Rev Med Chem; 2010 Jul; 10(8):737-45. PubMed ID: 20565385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance.
    Zhao P; Li L; Zhou S; Qiu L; Qian Z; Liu X; Cao X; Zhang H
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():108-117. PubMed ID: 29519418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.