These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 30632706)

  • 21. Bioprinting Using Organ Building Blocks: Spheroids, Organoids, and Assembloids.
    Baptista LS; Mironov V; Koudan E; Amorim ÉA; Pampolha TP; Kasyanov V; Kovalev A; Senatov F; Granjeiro JM
    Tissue Eng Part A; 2024 Jul; 30(13-14):377-386. PubMed ID: 38062998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
    Gao G; Hubbell K; Schilling AF; Dai G; Cui X
    Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study.
    Jung SY; Lee SJ; Kim HY; Park HS; Wang Z; Kim HJ; Yoo JJ; Chung SM; Kim HS
    Biofabrication; 2016 Oct; 8(4):045015. PubMed ID: 27788126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration.
    Nakamura A; Murata D; Fujimoto R; Tamaki S; Nagata S; Ikeya M; Toguchida J; Nakayama K
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34380122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests.
    Murata D; Arai K; Nakayama K
    Adv Healthc Mater; 2020 Aug; 9(15):e1901831. PubMed ID: 32378363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes.
    Xu C; Chai W; Huang Y; Markwald RR
    Biotechnol Bioeng; 2012 Dec; 109(12):3152-60. PubMed ID: 22767299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exosomes from 3T3-J2 promote expansion of tracheal basal cells to facilitate rapid epithelization of 3D-printed double-layer tissue engineered trachea.
    Zhang X; Jing H; Luo K; Shi B; Luo Q; Zhu Z; He X; Zheng J
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112371. PubMed ID: 34579890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].
    Liao J; Wang S; Chen J; Xie H; Zhou J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 42(2):221-225. PubMed ID: 28255127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold.
    Liu L; Wu W; Tuo X; Geng W; Zhao J; Wei J; Yan X; Yang W; Li L; Chen F
    Artif Organs; 2010 May; 34(5):426-33. PubMed ID: 20633157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair.
    Gao M; Zhang H; Dong W; Bai J; Gao B; Xia D; Feng B; Chen M; He X; Yin M; Xu Z; Witman N; Fu W; Zheng J
    Sci Rep; 2017 Jul; 7(1):5246. PubMed ID: 28701742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
    Singh YP; Bandyopadhyay A; Mandal BB
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [A preliminary study of three-dimensional bio-printing by polycaprolactone and periodontal ligament stem cells].
    Xu J; Hu M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Apr; 52(4):238-242. PubMed ID: 28412790
    [No Abstract]   [Full Text] [Related]  

  • 38. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size.
    Park JH; Ahn M; Park SH; Kim H; Bae M; Park W; Hollister SJ; Kim SW; Cho DW
    Biomaterials; 2021 Dec; 279():121246. PubMed ID: 34775331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printing facilitated scaffold-free tissue unit fabrication.
    Tan Y; Richards DJ; Trusk TC; Visconti RP; Yost MJ; Kindy MS; Drake CJ; Argraves WS; Markwald RR; Mei Y
    Biofabrication; 2014 Jun; 6(2):024111. PubMed ID: 24717646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.