These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 30632768)

  • 21. Improving the bioavailability of nutrients in plant foods at the household level.
    Gibson RS; Perlas L; Hotz C
    Proc Nutr Soc; 2006 May; 65(2):160-8. PubMed ID: 16672077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome.
    Bielik V; Kolisek M
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.
    Sarwar Gilani G; Wu Xiao C; Cockell KA
    Br J Nutr; 2012 Aug; 108 Suppl 2():S315-32. PubMed ID: 23107545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products.
    Feizollahi E; Mirmahdi RS; Zoghi A; Zijlstra RT; Roopesh MS; Vasanthan T
    Food Res Int; 2021 May; 143():110284. PubMed ID: 33992384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods.
    Chitra U; Singh U; Rao PV
    Plant Foods Hum Nutr; 1996 Jun; 49(4):307-16. PubMed ID: 8983057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains.
    Hemalatha S; Platel K; Srinivasan K
    Eur J Clin Nutr; 2007 Mar; 61(3):342-8. PubMed ID: 16969377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chelating properties of dietary fiber and phytate. The role for mineral availability.
    Frølich W
    Adv Exp Med Biol; 1990; 270():83-93. PubMed ID: 1964021
    [No Abstract]   [Full Text] [Related]  

  • 28. Enhancement of attributes of cereals by germination and fermentation: a review.
    Singh AK; Rehal J; Kaur A; Jyot G
    Crit Rev Food Sci Nutr; 2015; 55(11):1575-89. PubMed ID: 24915317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion.
    Antoine T; Icard-Vernière C; Scorrano G; Salhi A; Halimi C; Georgé S; Carrière F; Mouquet-Rivier C; Reboul E
    Food Chem; 2021 Jun; 347():128621. PubMed ID: 33503576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digestibility of processed food protein.
    Oste RE
    Adv Exp Med Biol; 1991; 289():371-88. PubMed ID: 1897402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients.
    Pramitha JL; Rana S; Aggarwal PR; Ravikesavan R; Joel AJ; Muthamilarasan M
    Adv Genet; 2021; 107():89-120. PubMed ID: 33641749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes.
    Zhang YY; Stockmann R; Ng K; Ajlouni S
    Crit Rev Food Sci Nutr; 2022; 62(6):1696-1712. PubMed ID: 33190514
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of dietary fiber and phytic acid on mineral availability.
    Torre M; Rodriguez AR; Saura-Calixto F
    Crit Rev Food Sci Nutr; 1991; 30(1):1-22. PubMed ID: 1657026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of removing phytic acid on the bioaccessibility of Ca/Fe/Zn and protein digestion in soymilk.
    Lv W; Chen W; Tan S; Ba G; Sun C; Feng F; Sun Q; Xu D
    J Sci Food Agric; 2024 Jul; 104(9):5262-5273. PubMed ID: 38329463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate.
    Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y
    J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement in HC1-extractability of minerals in home made weaning foods.
    Gahlawat P; Sehgal S
    Plant Foods Hum Nutr; 1995 Feb; 47(2):173-9. PubMed ID: 7792266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The role of phytates in human nutrition].
    Shikh EV; Makhova AA; Dorogun OB; Elizarova EV
    Vopr Pitan; 2023; 92(4):20-28. PubMed ID: 37801451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potential to improve zinc status through biofortification of staple food crops with zinc.
    Hotz C
    Food Nutr Bull; 2009 Mar; 30(1 Suppl):S172-8. PubMed ID: 19472606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing of newly released ricebean and fababean cultivars: changes in total and available calcium, iron and phosphorus.
    Saharan K; Khetarpaul N; Bishnoi S
    Int J Food Sci Nutr; 2001 Sep; 52(5):413-8. PubMed ID: 11517733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of combinations of promoter and inhibitor on the bioaccessibility of iron and zinc from food grains.
    Gautam S; Platel K; Srinivasan K
    Int J Food Sci Nutr; 2011 Dec; 62(8):826-34. PubMed ID: 21619459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.