These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 30633175)
1. Predictive models composed by radiomic features extracted from multi-detector computed tomography images for predicting low- and high- grade clear cell renal cell carcinoma: A STARD-compliant article. He X; Zhang H; Zhang T; Han F; Song B Medicine (Baltimore); 2019 Jan; 98(2):e13957. PubMed ID: 30633175 [TBL] [Abstract][Full Text] [Related]
2. Grading of Clear Cell Renal Cell Carcinomas by Using Machine Learning Based on Artificial Neural Networks and Radiomic Signatures Extracted From Multidetector Computed Tomography Images. He X; Wei Y; Zhang H; Zhang T; Yuan F; Huang Z; Han F; Song B Acad Radiol; 2020 Feb; 27(2):157-168. PubMed ID: 31147235 [TBL] [Abstract][Full Text] [Related]
3. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Shu J; Tang Y; Cui J; Yang R; Meng X; Cai Z; Zhang J; Xu W; Wen D; Yin H Eur J Radiol; 2018 Dec; 109():8-12. PubMed ID: 30527316 [TBL] [Abstract][Full Text] [Related]
4. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
5. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634 [TBL] [Abstract][Full Text] [Related]
6. CT-based multi-phase Radiomic models for differentiating clear cell renal cell carcinoma. Chen M; Yin F; Yu Y; Zhang H; Wen G Cancer Imaging; 2021 Jun; 21(1):42. PubMed ID: 34162442 [TBL] [Abstract][Full Text] [Related]
7. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
8. Multiparametric MRI Radiomic Model for Preoperative Predicting WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma. Li Q; Liu YJ; Dong D; Bai X; Huang QB; Guo AT; Ye HY; Tian J; Wang HY J Magn Reson Imaging; 2020 Nov; 52(5):1557-1566. PubMed ID: 32462799 [TBL] [Abstract][Full Text] [Related]
9. CT-based radiomics model using stability selection for predicting the World Health Organization/International Society of Urological Pathology grade of clear cell renal cell carcinoma. Zhang H; Yin F; Chen M; Qi A; Yang L; Wen G Br J Radiol; 2024 May; 97(1158):1169-1179. PubMed ID: 38688660 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of Clear Cell and Non-clear-cell Renal Cell Carcinoma through CT-based Radiomics Models and Nomogram. Cheng D; Abudikeranmu Y; Tuerdi B Curr Med Imaging; 2023; 19(9):1005-1017. PubMed ID: 36411581 [TBL] [Abstract][Full Text] [Related]
11. Differentiation of renal angiomyolipoma without visible fat from small clear cell renal cell carcinoma by using specific region of interest on contrast-enhanced CT: a new combination of quantitative tools. Wang X; Song G; Jiang H Cancer Imaging; 2021 Jul; 21(1):47. PubMed ID: 34225784 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
13. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Lin F; Cui EM; Lei Y; Luo LP Abdom Radiol (NY); 2019 Jul; 44(7):2528-2534. PubMed ID: 30919041 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of renal cell carcinoma subtypes through MRI-based radiomics analysis. Wang W; Cao K; Jin S; Zhu X; Ding J; Peng W Eur Radiol; 2020 Oct; 30(10):5738-5747. PubMed ID: 32367419 [TBL] [Abstract][Full Text] [Related]
15. Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images. Sun X; Liu L; Xu K; Li W; Huo Z; Liu H; Shen T; Pan F; Jiang Y; Zhang M Medicine (Baltimore); 2019 Apr; 98(14):e15022. PubMed ID: 30946334 [TBL] [Abstract][Full Text] [Related]
16. Radiomics models based on enhanced computed tomography to distinguish clear cell from non-clear cell renal cell carcinomas. Wang P; Pei X; Yin XP; Ren JL; Wang Y; Ma LY; Du XG; Gao BL Sci Rep; 2021 Jul; 11(1):13729. PubMed ID: 34215760 [TBL] [Abstract][Full Text] [Related]
17. A CT-Based Radiomics Approach for the Differential Diagnosis of Sarcomatoid and Clear Cell Renal Cell Carcinoma. Meng X; Shu J; Xia Y; Yang R Biomed Res Int; 2020; 2020():7103647. PubMed ID: 32775436 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound-Based Radiomics for Predicting the WHO/ISUP Grading of Clear-Cell Renal Cell Carcinoma. Chen YF; Fu F; Zhuang JJ; Zheng WT; Zhu YF; Lian GT; Fan XQ; Zhang HP; Ye Q Ultrasound Med Biol; 2024 Nov; 50(11):1619-1627. PubMed ID: 39097493 [TBL] [Abstract][Full Text] [Related]
19. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the Efficacy of Radiomics-Based Prediction of Fuhrman Pathological Grading in Renal Clear Cell Carcinoma Using Multilayer Spiral CT Imaging. Liu B; Liu A; Wu Y; Qi Y; Peng Y Arch Esp Urol; 2024 Jul; 77(6):674-680. PubMed ID: 39104236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]