These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30633255)

  • 1. Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds.
    Damanik FFR; Spadolini G; Rotmans J; Farè S; Moroni L
    Biomater Sci; 2019 Feb; 7(3):1088-1100. PubMed ID: 30633255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.
    Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z
    Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration.
    Hendrikson WJ; Zeng X; Rouwkema J; van Blitterswijk CA; van der Heide E; Moroni L
    Adv Healthc Mater; 2016 Jan; 5(2):232-43. PubMed ID: 26775915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration.
    Nandakumar A; Tahmasebi Birgani Z; Santos D; Mentink A; Auffermann N; van der Werf K; Bennink M; Moroni L; van Blitterswijk C; Habibovic P
    Biofabrication; 2013 Mar; 5(1):015006. PubMed ID: 23229020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
    Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
    Gaharwar AK; Mukundan S; Karaca E; Dolatshahi-Pirouz A; Patel A; Rangarajan K; Mihaila SM; Iviglia G; Zhang H; Khademhosseini A
    Tissue Eng Part A; 2014 Aug; 20(15-16):2088-101. PubMed ID: 24842693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.
    Baker BM; Gee AO; Metter RB; Nathan AS; Marklein RA; Burdick JA; Mauck RL
    Biomaterials; 2008 May; 29(15):2348-58. PubMed ID: 18313138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering.
    Mathews S; Bhonde R; Gupta PK; Totey S
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1825-34. PubMed ID: 24723571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs.
    Lukášová V; Buzgo M; Vocetková K; Sovková V; Doupník M; Himawan E; Staffa A; Sedláček R; Chlup H; Rustichelli F; Amler E; Rampichová M
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():567-575. PubMed ID: 30678943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells.
    Yao T; Chen H; Baker MB; Moroni L
    Tissue Eng Part C Methods; 2020 Jan; 26(1):11-22. PubMed ID: 31774033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors.
    Polini A; Pisignano D; Parodi M; Quarto R; Scaglione S
    PLoS One; 2011; 6(10):e26211. PubMed ID: 22022571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration.
    Nandakumar A; Fernandes H; de Boer J; Moroni L; Habibovic P; van Blitterswijk CA
    Macromol Biosci; 2010 Nov; 10(11):1365-73. PubMed ID: 20799255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements.
    Thibault RA; Scott Baggett L; Mikos AG; Kasper FK
    Tissue Eng Part A; 2010 Feb; 16(2):431-40. PubMed ID: 19863274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells.
    Gao G; Schilling AF; Yonezawa T; Wang J; Dai G; Cui X
    Biotechnol J; 2014 Oct; 9(10):1304-11. PubMed ID: 25130390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose effect of tumor necrosis factor-alpha on in vitro osteogenic differentiation of mesenchymal stem cells on biodegradable polymeric microfiber scaffolds.
    Mountziaris PM; Tzouanas SN; Mikos AG
    Biomaterials; 2010 Mar; 31(7):1666-75. PubMed ID: 19963268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.