BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30633356)

  • 1. Revisiting human cerebral blood flow responses to augmented blood pressure oscillations.
    Hamner JW; Ishibashi K; Tan CO
    J Physiol; 2019 Mar; 597(6):1553-1564. PubMed ID: 30633356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress.
    Brown CM; Dütsch M; Ohring S; Neundörfer B; Hilz MJ
    Eur J Appl Physiol; 2004 Mar; 91(2-3):279-86. PubMed ID: 14574578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing cerebral autoregulation via oscillatory lower body negative pressure and projection pursuit regression.
    Taylor JA; Tan CO; Hamner JW
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations.
    Hamner JW; Cohen MA; Mukai S; Lipsitz LA; Taylor JA
    J Physiol; 2004 Sep; 559(Pt 3):965-73. PubMed ID: 15254153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure.
    Brothers RM; Zhang R; Wingo JE; Hubing KA; Crandall CG
    J Appl Physiol (1985); 2009 Dec; 107(6):1722-9. PubMed ID: 19797691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
    Hilz MJ; Kolodny EH; Brys M; Stemper B; Haendl T; Marthol H
    J Neurol; 2004 May; 251(5):564-70. PubMed ID: 15164189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining the characteristic relationship between arterial pressure and cerebral flow.
    Tan CO
    J Appl Physiol (1985); 2012 Oct; 113(8):1194-200. PubMed ID: 22961266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of myogenic mechanisms in human cerebrovascular regulation.
    Tan CO; Hamner JW; Taylor JA
    J Physiol; 2013 Oct; 591(20):5095-105. PubMed ID: 23959681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contributions of systemic hemodynamic variables to cerebral autoregulation during orthostatic stress.
    Yoshida H; Hamner JW; Ishibashi K; Tan CO
    J Appl Physiol (1985); 2018 Feb; 124(2):321-329. PubMed ID: 29025902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans.
    Zhang R; Zuckerman JH; Levine BD
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1848-55. PubMed ID: 10843881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer function analysis of dynamic cerebral autoregulation in humans.
    Zhang R; Zuckerman JH; Giller CA; Levine BD
    Am J Physiol; 1998 Jan; 274(1 Pt 2):H233-41. PubMed ID: 9458872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2016 Mar; 120(5):552-63. PubMed ID: 26586907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic control of the cerebral vasculature in humans.
    Hamner JW; Tan CO; Tzeng YC; Taylor JA
    J Physiol; 2012 Dec; 590(24):6343-52. PubMed ID: 23070700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency response characteristics of cerebral blood flow autoregulation in rats.
    Kolb B; Rotella DL; Stauss HM
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H432-8. PubMed ID: 16963612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiovascular and cerebrovascular responses to lower body negative pressure in type 2 diabetic patients.
    Marthol H; Zikeli U; Brown CM; Tutaj M; Hilz MJ
    J Neurol Sci; 2007 Jan; 252(2):99-105. PubMed ID: 17173934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers.
    Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.
    Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic neural control of dynamic cerebral autoregulation in humans.
    Zhang R; Zuckerman JH; Iwasaki K; Wilson TE; Crandall CG; Levine BD
    Circulation; 2002 Oct; 106(14):1814-20. PubMed ID: 12356635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.