These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 30633450)

  • 1. Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting.
    Urbain F; Tang P; Smirnov V; Welter K; Andreu T; Finger F; Arbiol J; Morante JR
    ChemSusChem; 2019 Apr; 12(7):1428-1436. PubMed ID: 30633450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.
    Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH
    ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode.
    Han L; Abdi FF; Perez Rodriguez P; Dam B; van de Krol R; Zeman M; Smets AH
    Phys Chem Chem Phys; 2014 Mar; 16(9):4220-9. PubMed ID: 24452785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.
    Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J
    ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO
    Jun SE; Hong SP; Choi S; Kim C; Ji SG; Park IJ; Lee SA; Yang JW; Lee TH; Sohn W; Kim JY; Jang HW
    Small; 2021 Oct; 17(39):e2103457. PubMed ID: 34453489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting.
    Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J
    Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.
    Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N
    ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP
    Chen F; Zhu Q; Wang Y; Cui W; Su X; Li Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31025-31031. PubMed ID: 27768279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Light-Induced Degradation on the Performance of Multijunction Thin-Film Silicon-Based Photoelectrochemical Water-Splitting Devices.
    Urbain F; Smirnov V; Becker JP; Finger F
    ACS Omega; 2016 Nov; 1(5):832-836. PubMed ID: 31457165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode.
    Abdi FF; Han L; Smets AH; Zeman M; Dam B; van de Krol R
    Nat Commun; 2013; 4():2195. PubMed ID: 23893238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Transparent, High-Performance, and Stable Sb
    Wang L; Lian W; Liu B; Lv H; Zhang Y; Wu X; Wang T; Gong J; Chen T; Xu H
    Adv Mater; 2022 Jul; 34(29):e2200723. PubMed ID: 35580906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporous Ultrathin In
    Yan G; Dong Y; Wu T; Xing S; Wang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52912-52920. PubMed ID: 34709787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroless Plating of NiFeP Alloy on the Surface of Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation.
    Li F; Li Y; Zhuo Q; Zhou D; Zhao Y; Zhao Z; Wu X; Shan Y; Sun L
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11479-11488. PubMed ID: 32056436
    [No Abstract]   [Full Text] [Related]  

  • 15. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects.
    Luo Z; Wang T; Gong J
    Chem Soc Rev; 2019 Apr; 48(7):2158-2181. PubMed ID: 30601502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorophyll(
    Roy K; Ghosh D; Sarkar K; Devi P; Kumar P
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37218-37226. PubMed ID: 32814382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber photoanode for solar water splitting.
    Zhou Z; Li L; Niu Y; Song H; Xing XS; Guo Z; Wu S
    Dalton Trans; 2021 Feb; 50(8):2936-2944. PubMed ID: 33555279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triboelectric Nanogenerator Driven Self-Powered Photoelectrochemical Water Splitting Based on Hematite Photoanodes.
    Wei A; Xie X; Wen Z; Zheng H; Lan H; Shao H; Sun X; Zhong J; Lee ST
    ACS Nano; 2018 Aug; 12(8):8625-8632. PubMed ID: 30036045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin planar hematite film for solar photoelectrochemical water splitting.
    Liu D; Bierman DM; Lenert A; Yu HT; Yang Z; Wang EN; Duan YY
    Opt Express; 2015 Nov; 23(24):A1491-8. PubMed ID: 26698797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.