BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30633603)

  • 1. Genome-wide DNA methylation and transcriptomic profiles in the lifestyle strategies and asexual development of the forest fungal pathogen Heterobasidion parviporum.
    Zeng Z; Wu J; Kovalchuk A; Raffaello T; Wen Z; Liu M; Asiegbu FO
    Epigenetics; 2019 Jan; 14(1):16-40. PubMed ID: 30633603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterobasidion Partitivirus 13 Mediates Severe Growth Debilitation and Major Alterations in the Gene Expression of a Fungal Forest Pathogen.
    Vainio EJ; Jurvansuu J; Hyder R; Kashif M; Piri T; Tuomivirta T; Poimala A; Xu P; Mäkelä S; Nitisa D; Hantula J
    J Virol; 2018 Mar; 92(5):. PubMed ID: 29237832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraspecific comparative genomics of isolates of the Norway spruce pathogen (Heterobasidion parviporum) and identification of its potential virulence factors.
    Zeng Z; Sun H; Vainio EJ; Raffaello T; Kovalchuk A; Morin E; Duplessis S; Asiegbu FO
    BMC Genomics; 2018 Mar; 19(1):220. PubMed ID: 29580224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual RNA-seq analysis provides new insights into interactions between Norway spruce and necrotrophic pathogen Heterobasidion annosum s.l.
    Kovalchuk A; Zeng Z; Ghimire RP; Kivimäenpää M; Raffaello T; Liu M; Mukrimin M; Kasanen R; Sun H; Julkunen-Tiitto R; Holopainen JK; Asiegbu FO
    BMC Plant Biol; 2019 Jan; 19(1):2. PubMed ID: 30606115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae.
    Jeon J; Choi J; Lee GW; Park SY; Huh A; Dean RA; Lee YH
    Sci Rep; 2015 Feb; 5():8567. PubMed ID: 25708804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dark septate endophyte Phialocephala sphaeroides suppresses conifer pathogen transcripts and promotes root growth of Norway spruce.
    Wang K; Wen Z; Asiegbu FO
    Tree Physiol; 2022 Dec; 42(12):2627-2639. PubMed ID: 35878416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spread of Heterobasidion annosum s.s. and Heterobasidion parviporum in Picea abies 15 years after stump inoculation.
    Oliva J; Bendz-Hellgren M; Stenlid J
    FEMS Microbiol Ecol; 2011 Mar; 75(3):414-29. PubMed ID: 21204866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and Chemical Screening for Inherent Disease Resistance Factors of Norway Spruce (
    Liu M; Wang K; Ghimire RP; Haapanen M; Kivimäenpää M; Asiegbu FO
    Phytopathology; 2022 Apr; 112(4):872-880. PubMed ID: 34698543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylem defense wood of Norway spruce compromised by the pathogenic white-rot fungus Heterobasidion parviporum shows a prolonged period of selective decay.
    Nagy NE; Ballance S; Kvaalen H; Fossdal CG; Solheim H; Hietala AM
    Planta; 2012 Oct; 236(4):1125-33. PubMed ID: 22644766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll fluorescence imaging for monitoring effects of Heterobasidion parviporum small secreted protein induced cell death and in planta defense gene expression.
    Wen Z; Raffaello T; Zeng Z; Pavicic M; Asiegbu FO
    Fungal Genet Biol; 2019 May; 126():37-49. PubMed ID: 30763724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dark septate endophyte Phialocephala sphaeroides confers growth fitness benefits and mitigates pathogenic effects of Heterobasidion on Norway spruce.
    Wen Z; Terhonen E; Asiegbu FO
    Tree Physiol; 2022 Apr; 42(4):891-906. PubMed ID: 34791486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Conifer Root and Stem Rot Pathogen (
    Wen Z; Zeng Z; Ren F; Asiegbu FO
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31817407
    [No Abstract]   [Full Text] [Related]  

  • 13. The stem rust fungus Puccinia graminis f. sp. tritici induces centromeric small RNAs during late infection that are associated with genome-wide DNA methylation.
    Sperschneider J; Jones AW; Nasim J; Xu B; Jacques S; Zhong C; Upadhyaya NM; Mago R; Hu Y; Figueroa M; Singh KB; Stone EA; Schwessinger B; Wang MB; Taylor JM; Dodds PN
    BMC Biol; 2021 Sep; 19(1):203. PubMed ID: 34526021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum.
    Adomas A; Eklund M; Johansson M; Asiegbu FO
    FEMS Microbiol Ecol; 2006 Jul; 57(1):26-39. PubMed ID: 16819947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association genetics identifies a specifically regulated Norway spruce laccase gene, PaLAC5, linked to Heterobasidion parviporum resistance.
    Elfstrand M; Baison J; Lundén K; Zhou L; Vos I; Capador HD; Åslund MS; Chen Z; Chaudhary R; Olson Å; Wu HX; Karlsson B; Stenlid J; García-Gil MR
    Plant Cell Environ; 2020 Jul; 43(7):1779-1791. PubMed ID: 32276288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content.
    Montanini B; Chen PY; Morselli M; Jaroszewicz A; Lopez D; Martin F; Ottonello S; Pellegrini M
    Genome Biol; 2014 Jul; 15(7):411. PubMed ID: 25091826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pathogenic white-rot fungus Heterobasidion parviporum triggers non-specific defence responses in the bark of Norway spruce.
    Arnerup J; Lind M; Olson Å; Stenlid J; Elfstrand M
    Tree Physiol; 2011 Nov; 31(11):1262-72. PubMed ID: 22084022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris.
    Wang YL; Wang ZX; Liu C; Wang SB; Huang B
    Fungal Biol; 2015 Dec; 119(12):1246-1254. PubMed ID: 26615747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen.
    Olson Å; Aerts A; Asiegbu F; Belbahri L; Bouzid O; Broberg A; Canbäck B; Coutinho PM; Cullen D; Dalman K; Deflorio G; van Diepen LTA; Dunand C; Duplessis S; Durling M; Gonthier P; Grimwood J; Fossdal CG; Hansson D; Henrissat B; Hietala A; Himmelstrand K; Hoffmeister D; Högberg N; James TY; Karlsson M; Kohler A; Kües U; Lee YH; Lin YC; Lind M; Lindquist E; Lombard V; Lucas S; Lundén K; Morin E; Murat C; Park J; Raffaello T; Rouzé P; Salamov A; Schmutz J; Solheim H; Ståhlberg J; Vélëz H; de Vries RP; Wiebenga A; Woodward S; Yakovlev I; Garbelotto M; Martin F; Grigoriev IV; Stenlid J
    New Phytol; 2012 Jun; 194(4):1001-1013. PubMed ID: 22463738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conifer root rot pathogens Heterobasidion irregulare and Heterobasidion occidentale employ different strategies to infect Norway spruce.
    Hu Y; Elfstrand M; Stenlid J; Durling MB; Olson Å
    Sci Rep; 2020 Apr; 10(1):5884. PubMed ID: 32246017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.