These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 30633947)
1. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. Johnsen KB; Bak M; Melander F; Thomsen MS; Burkhart A; Kempen PJ; Andresen TL; Moos T J Control Release; 2019 Feb; 295():237-249. PubMed ID: 30633947 [TBL] [Abstract][Full Text] [Related]
3. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. Johnsen KB; Moos T J Control Release; 2016 Jan; 222():32-46. PubMed ID: 26658072 [TBL] [Abstract][Full Text] [Related]
4. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Wiley DT; Webster P; Gale A; Davis ME Proc Natl Acad Sci U S A; 2013 May; 110(21):8662-7. PubMed ID: 23650374 [TBL] [Abstract][Full Text] [Related]
5. Targeting the transferrin receptor for brain drug delivery. Johnsen KB; Burkhart A; Thomsen LB; Andresen TL; Moos T Prog Neurobiol; 2019 Oct; 181():101665. PubMed ID: 31376426 [TBL] [Abstract][Full Text] [Related]
6. Transferrin Receptor-Mediated Uptake at the Blood-Brain Barrier Is Not Impaired by Alzheimer's Disease Neuropathology. Bourassa P; Alata W; Tremblay C; Paris-Robidas S; Calon F Mol Pharm; 2019 Feb; 16(2):583-594. PubMed ID: 30609376 [TBL] [Abstract][Full Text] [Related]
7. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Lakkadwala S; Singh J Colloids Surf B Biointerfaces; 2019 Jan; 173():27-35. PubMed ID: 30261346 [TBL] [Abstract][Full Text] [Related]
8. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Clark AJ; Davis ME Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12486-91. PubMed ID: 26392563 [TBL] [Abstract][Full Text] [Related]
9. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Johnsen KB; Burkhart A; Melander F; Kempen PJ; Vejlebo JB; Siupka P; Nielsen MS; Andresen TL; Moos T Sci Rep; 2017 Sep; 7(1):10396. PubMed ID: 28871203 [TBL] [Abstract][Full Text] [Related]
10. Trafficking of Gold Nanoparticles Coated with the 8D3 Anti-Transferrin Receptor Antibody at the Mouse Blood-Brain Barrier. Cabezón I; Manich G; Martín-Venegas R; Camins A; Pelegrí C; Vilaplana J Mol Pharm; 2015 Nov; 12(11):4137-45. PubMed ID: 26440359 [TBL] [Abstract][Full Text] [Related]
11. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier. Mészáros M; Porkoláb G; Kiss L; Pilbat AM; Kóta Z; Kupihár Z; Kéri A; Galbács G; Siklós L; Tóth A; Fülöp L; Csete M; Sipos Á; Hülper P; Sipos P; Páli T; Rákhely G; Szabó-Révész P; Deli MA; Veszelka S Eur J Pharm Sci; 2018 Oct; 123():228-240. PubMed ID: 30031862 [TBL] [Abstract][Full Text] [Related]
12. Comparison of polypeptides that bind the transferrin receptor for targeting gold nanocarriers. McQuaid C; Halsey A; Dubois M; Romero I; Male D PLoS One; 2021; 16(6):e0252341. PubMed ID: 34086733 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Yu YJ; Atwal JK; Zhang Y; Tong RK; Wildsmith KR; Tan C; Bien-Ly N; Hersom M; Maloney JA; Meilandt WJ; Bumbaca D; Gadkar K; Hoyte K; Luk W; Lu Y; Ernst JA; Scearce-Levie K; Couch JA; Dennis MS; Watts RJ Sci Transl Med; 2014 Nov; 6(261):261ra154. PubMed ID: 25378646 [TBL] [Abstract][Full Text] [Related]
14. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. Gosk S; Vermehren C; Storm G; Moos T J Cereb Blood Flow Metab; 2004 Nov; 24(11):1193-204. PubMed ID: 15545912 [TBL] [Abstract][Full Text] [Related]
15. Permeability of PEGylated immunoarsonoliposomes through in vitro blood brain barrier-medulloblastoma co-culture models for brain tumor therapy. Al-Shehri A; Favretto ME; Ioannou PV; Romero IA; Couraud PO; Weksler BB; Parker TL; Kallinteri P Pharm Res; 2015 Mar; 32(3):1072-83. PubMed ID: 25236341 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/Transferrin Receptor Complex. Kang T; Jiang M; Jiang D; Feng X; Yao J; Song Q; Chen H; Gao X; Chen J Mol Pharm; 2015 Aug; 12(8):2947-61. PubMed ID: 26149889 [TBL] [Abstract][Full Text] [Related]
17. Study of the transcytosis of an anti-transferrin receptor antibody with a Fab' cargo across the blood-brain barrier in mice. Manich G; Cabezón I; del Valle J; Duran-Vilaregut J; Camins A; Pallàs M; Pelegrí C; Vilaplana J Eur J Pharm Sci; 2013 Jul; 49(4):556-64. PubMed ID: 23748097 [TBL] [Abstract][Full Text] [Related]
18. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Zhang B; Sun X; Mei H; Wang Y; Liao Z; Chen J; Zhang Q; Hu Y; Pang Z; Jiang X Biomaterials; 2013 Dec; 34(36):9171-82. PubMed ID: 24008043 [TBL] [Abstract][Full Text] [Related]