These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30633965)

  • 1. Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data.
    Klapwijk ET; van de Kamp F; van der Meulen M; Peters S; Wierenga LM
    Neuroimage; 2019 Apr; 189():116-129. PubMed ID: 30633965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality control strategies for brain MRI segmentation and parcellation: Practical approaches and recommendations - insights from the Maastricht study.
    Monereo-Sánchez J; de Jong JJA; Drenthen GS; Beran M; Backes WH; Stehouwer CDA; Schram MT; Linden DEJ; Jansen JFA
    Neuroimage; 2021 Aug; 237():118174. PubMed ID: 34000406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream.
    Hedges EP; Dimitrov M; Zahid U; Brito Vega B; Si S; Dickson H; McGuire P; Williams S; Barker GJ; Kempton MJ
    Neuroimage; 2022 Feb; 246():118751. PubMed ID: 34848299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quality assessment of structural magnetic resonance images in children: Comparison with visual inspection and surface-based reconstruction.
    White T; Jansen PR; Muetzel RL; Sudre G; El Marroun H; Tiemeier H; Qiu A; Shaw P; Michael AM; Verhulst FC
    Hum Brain Mapp; 2018 Mar; 39(3):1218-1231. PubMed ID: 29206318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of structural image quality.
    Rosen AFG; Roalf DR; Ruparel K; Blake J; Seelaus K; Villa LP; Ciric R; Cook PA; Davatzikos C; Elliott MA; Garcia de La Garza A; Gennatas ED; Quarmley M; Schmitt JE; Shinohara RT; Tisdall MD; Craddock RC; Gur RE; Gur RC; Satterthwaite TD
    Neuroimage; 2018 Apr; 169():407-418. PubMed ID: 29278774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised machine learning quality control for magnetic resonance artifacts in neonatal data sets.
    Ding Y; Suffren S; Bellec P; Lodygensky GA
    Hum Brain Mapp; 2019 Mar; 40(4):1290-1297. PubMed ID: 30467922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic comparisons of different quality control approaches applied to three large pediatric neuroimaging datasets.
    Nakua H; Hawco C; Forde NJ; Joseph M; Grillet M; Johnson D; Jacobs GR; Hill S; Voineskos AN; Wheeler AL; Lai MC; Szatmari P; Georgiades S; Nicolson R; Schachar R; Crosbie J; Anagnostou E; Lerch JP; Arnold PD; Ameis SH
    Neuroimage; 2023 Jul; 274():120119. PubMed ID: 37068719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation.
    Makowski C; Béland S; Kostopoulos P; Bhagwat N; Devenyi GA; Malla AK; Joober R; Lepage M; Chakravarty MM
    Neuroimage; 2018 Apr; 170():182-198. PubMed ID: 28259781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time motion analytics during brain MRI improve data quality and reduce costs.
    Dosenbach NUF; Koller JM; Earl EA; Miranda-Dominguez O; Klein RL; Van AN; Snyder AZ; Nagel BJ; Nigg JT; Nguyen AL; Wesevich V; Greene DJ; Fair DA
    Neuroimage; 2017 Nov; 161():80-93. PubMed ID: 28803940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
    Alfaro-Almagro F; Jenkinson M; Bangerter NK; Andersson JLR; Griffanti L; Douaud G; Sotiropoulos SN; Jbabdi S; Hernandez-Fernandez M; Vallee E; Vidaurre D; Webster M; McCarthy P; Rorden C; Daducci A; Alexander DC; Zhang H; Dragonu I; Matthews PM; Miller KL; Smith SM
    Neuroimage; 2018 Feb; 166():400-424. PubMed ID: 29079522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years.
    Lange N; Travers BG; Bigler ED; Prigge MB; Froehlich AL; Nielsen JA; Cariello AN; Zielinski BA; Anderson JS; Fletcher PT; Alexander AA; Lainhart JE
    Autism Res; 2015 Feb; 8(1):82-93. PubMed ID: 25381736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies.
    Brown RA; Fetco D; Fratila R; Fadda G; Jiang S; Alkhawajah NM; Yeh EA; Banwell B; Bar-Or A; Arnold DL;
    Neuroimage; 2020 Mar; 208():116442. PubMed ID: 31821865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning.
    Jin B; Krishnan B; Adler S; Wagstyl K; Hu W; Jones S; Najm I; Alexopoulos A; Zhang K; Zhang J; Ding M; Wang S; ; Wang ZI
    Epilepsia; 2018 May; 59(5):982-992. PubMed ID: 29637549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate brain-age models for routine clinical MRI examinations.
    Wood DA; Kafiabadi S; Busaidi AA; Guilhem E; Montvila A; Lynch J; Townend M; Agarwal S; Mazumder A; Barker GJ; Ourselin S; Cole JH; Booth TC
    Neuroimage; 2022 Apr; 249():118871. PubMed ID: 34995797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan.
    Pomponio R; Erus G; Habes M; Doshi J; Srinivasan D; Mamourian E; Bashyam V; Nasrallah IM; Satterthwaite TD; Fan Y; Launer LJ; Masters CL; Maruff P; Zhuo C; Völzke H; Johnson SC; Fripp J; Koutsouleris N; Wolf DH; Gur R; Gur R; Morris J; Albert MS; Grabe HJ; Resnick SM; Bryan RN; Wolk DA; Shinohara RT; Shou H; Davatzikos C
    Neuroimage; 2020 Mar; 208():116450. PubMed ID: 31821869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach.
    Lavagnino L; Amianto F; Mwangi B; D'Agata F; Spalatro A; Zunta-Soares GB; Abbate Daga G; Mortara P; Fassino S; Soares JC
    Psychol Med; 2015 Oct; 45(13):2805-12. PubMed ID: 25990697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of traveling-subject and ComBat harmonization methods for assessing structural brain characteristics.
    Maikusa N; Zhu Y; Uematsu A; Yamashita A; Saotome K; Okada N; Kasai K; Okanoya K; Yamashita O; Tanaka SC; Koike S
    Hum Brain Mapp; 2021 Nov; 42(16):5278-5287. PubMed ID: 34402132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imputation Strategy for Reliable Regional MRI Morphological Measurements.
    Sta Cruz S; Dinov ID; Herting MM; González-Zacarías C; Kim H; Toga AW; Sepehrband F
    Neuroinformatics; 2020 Jan; 18(1):59-70. PubMed ID: 31054076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.
    Wang JY; Ngo MM; Hessl D; Hagerman RJ; Rivera SM
    PLoS One; 2016; 11(5):e0156123. PubMed ID: 27213683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.