BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30633975)

  • 1. Transomics data-driven, ensemble kinetic modeling for system-level understanding and engineering of the cyanobacteria central metabolism.
    Nishiguchi H; Hiasa N; Uebayashi K; Liao J; Shimizu H; Matsuda F
    Metab Eng; 2019 Mar; 52():273-283. PubMed ID: 30633975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis.
    Yoshikawa K; Toya Y; Shimizu H
    Bioprocess Biosyst Eng; 2017 May; 40(5):791-796. PubMed ID: 28258322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel allosteric inhibition of phosphoribulokinase identified by ensemble kinetic modeling of
    Nishiguchi H; Liao J; Shimizu H; Matsuda F
    Metab Eng Commun; 2020 Dec; 11():e00153. PubMed ID: 33312875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803.
    Wang Y; Sun T; Gao X; Shi M; Wu L; Chen L; Zhang W
    Metab Eng; 2016 Mar; 34():60-70. PubMed ID: 26546088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.
    Wang X; Xiong X; Sa N; Roje S; Chen S
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):6091-101. PubMed ID: 27154348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant.
    Sengupta T; Bhushan M; Wangikar PP
    Photosynth Res; 2013 Nov; 118(1-2):155-65. PubMed ID: 24190812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803.
    Yu King Hing N; Liang F; Lindblad P; Morgan JA
    Metab Eng; 2019 Dec; 56():77-84. PubMed ID: 31470115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylene production with engineered Synechocystis sp PCC 6803 strains.
    Veetil VP; Angermayr SA; Hellingwerf KJ
    Microb Cell Fact; 2017 Feb; 16(1):34. PubMed ID: 28231787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation.
    Janasch M; Asplund-Samuelsson J; Steuer R; Hudson EP
    J Exp Bot; 2019 Feb; 70(3):973-983. PubMed ID: 30371804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in
    Deshpande A; Vue J; Morgan J
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox control of the activity of phosphoglycerate kinase in Synechocystis sp. PCC6803.
    Tsukamoto Y; Fukushima Y; Hara S; Hisabori T
    Plant Cell Physiol; 2013 Apr; 54(4):484-91. PubMed ID: 23299412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico strategies to couple production of bioethanol with growth in cyanobacteria.
    Lasry Testa R; Delpino C; Estrada V; Diaz SM
    Biotechnol Bioeng; 2019 Aug; 116(8):2061-2073. PubMed ID: 31034583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.
    Qiao J; Wang J; Chen L; Tian X; Huang S; Ren X; Zhang W
    J Proteome Res; 2012 Nov; 11(11):5286-300. PubMed ID: 23062023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2.
    Wang B; Pugh S; Nielsen DR; Zhang W; Meldrum DR
    Metab Eng; 2013 Mar; 16():68-77. PubMed ID: 23333586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different strategies of metabolic regulation in cyanobacteria: from transcriptional to biochemical control.
    Jablonsky J; Papacek S; Hagemann M
    Sci Rep; 2016 Sep; 6():33024. PubMed ID: 27611502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.
    Lin PC; Saha R; Zhang F; Pakrasi HB
    Sci Rep; 2017 Dec; 7(1):17503. PubMed ID: 29235513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803.
    Liang F; Lindblad P
    Metab Eng; 2016 Nov; 38():56-64. PubMed ID: 27328433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound.
    Englund E; Shabestary K; Hudson EP; Lindberg P
    Metab Eng; 2018 Sep; 49():164-177. PubMed ID: 30025762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803.
    Yoshikawa K; Kojima Y; Nakajima T; Furusawa C; Hirasawa T; Shimizu H
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):347-58. PubMed ID: 21881889
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Quinn L; Armshaw P; Soulimane T; Sheehan C; Ryan MP; Pembroke JT
    Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31717863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.