These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 30634176)

  • 1. A trapezoidal wing equivalent to a Janatella leucodesma's wing in terms of aerodynamic performance in the flapping flight of a butterfly model.
    Suzuki K; Yoshino M
    Bioinspir Biomim; 2019 Feb; 14(3):036003. PubMed ID: 30634176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up butterfly model with thorax-pitch control and wing-pitch flexibility.
    Suzuki K; Iguchi D; Ishizaki K; Yoshino M
    Bioinspir Biomim; 2024 Jun; 19(4):. PubMed ID: 38866024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations.
    Suzuki K; Aoki T; Yoshino M
    Phys Rev E; 2019 Jul; 100(1-1):013104. PubMed ID: 31499861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.
    Slegers N; Heilman M; Cranford J; Lang A; Yoder J; Habegger ML
    Bioinspir Biomim; 2017 Jan; 12(1):016013. PubMed ID: 28000615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.
    Fu J; Liu X; Shyy W; Qiu H
    Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum hovering wing planform.
    Nabawy MR; Crowther WJ
    J Theor Biol; 2016 Oct; 406():187-91. PubMed ID: 27329340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the flight dynamics of take-off of a butterfly: experiments and CFD simulations for a cabbage white butterfly.
    Suzuki K; Nakamura M; Kouji M; Yoshino M
    Biol Open; 2022 Mar; 11(3):. PubMed ID: 35098995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of structural flexibility of wings in flapping flight of butterfly.
    Senda K; Obara T; Kitamura M; Yokoyama N; Hirai N; Iima M
    Bioinspir Biomim; 2012 Jun; 7(2):025002. PubMed ID: 22617048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape, flapping and flexion: wing and fin design for forward flight.
    Combes SA; Daniel TL
    J Exp Biol; 2001 Jun; 204(Pt 12):2073-85. PubMed ID: 11441049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational investigation of lift generation and power expenditure of Pratt's roundleaf bat (Hipposideros pratti) in forward flight.
    Windes P; Fan X; Bender M; Tafti DK; Müller R
    PLoS One; 2018; 13(11):e0207613. PubMed ID: 30485321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism.
    Nguyen TA; Vu Phan H; Au TK; Park HC
    Bioinspir Biomim; 2016 Jun; 11(4):046001. PubMed ID: 27321705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.