These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 3063444)
1. Elevated levels of the c-myc protein in Bloom's syndrome and induction of c-myc by DNA strand breakage. Sullivan NF; Willis AE Curr Top Microbiol Immunol; 1988; 141():208-15. PubMed ID: 3063444 [No Abstract] [Full Text] [Related]
2. Biochemical properties of mammalian DNA ligase I and the molecular defect in Bloom's syndrome. Tomkinson AE; Lasko DD; Lindahl T Prog Clin Biol Res; 1990; 340A():283-94. PubMed ID: 2388916 [No Abstract] [Full Text] [Related]
3. Concomitant reversion of the characteristic phenotypic properties of a cell line of Bloom's syndrome origin. Willis AE; Spurr NK; Lindahl T Carcinogenesis; 1989 Jan; 10(1):217-9. PubMed ID: 2910526 [TBL] [Abstract][Full Text] [Related]
4. Molecular and biochemical aspects of Bloom's syndrome. Nicotera TM Cancer Genet Cytogenet; 1991 May; 53(1):1-13. PubMed ID: 1645226 [TBL] [Abstract][Full Text] [Related]
5. Relation between the human fibroblast strain 46BR and cell lines representative of Bloom's syndrome. Lehmann AR; Willis AE; Broughton BC; James MR; Steingrimsdottir H; Harcourt SA; Arlett CF; Lindahl T Cancer Res; 1988 Nov; 48(22):6343-7. PubMed ID: 3180052 [TBL] [Abstract][Full Text] [Related]
6. High levels of the c-myc protein in cell lines of Bloom's syndrome origin. Sullivan NF; Willis AE; Moore JP; Lindahl T Oncogene; 1989 Dec; 4(12):1509-11. PubMed ID: 2687770 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of p53, p21waf1/cip1 and hdm2 dependent on DNA damage in Bloom's syndrome fibroblasts. Collister M; Lane DP; Kuehl BL Carcinogenesis; 1998 Dec; 19(12):2115-20. PubMed ID: 9886565 [TBL] [Abstract][Full Text] [Related]
8. Altered DNA ligase I activity in Bloom's syndrome cells. Chan JY; Becker FF; German J; Ray JH Nature; 1987 Jan 22-28; 325(6102):357-9. PubMed ID: 3808032 [TBL] [Abstract][Full Text] [Related]
9. Elevated superoxide dismutase in Bloom's syndrome: a genetic condition of oxidative stress. Nicotera TM; Notaro J; Notaro S; Schumer J; Sandberg AA Cancer Res; 1989 Oct; 49(19):5239-43. PubMed ID: 2766291 [TBL] [Abstract][Full Text] [Related]
10. DNA ligase I, Bloom's syndrome, and cancer. Hecht F Cancer Genet Cytogenet; 1988 Jan; 30(1):181-2. PubMed ID: 3334985 [No Abstract] [Full Text] [Related]
11. Free radical mechanisms for chromosomal instability in Bloom's syndrome. Nicotera TM Adv Exp Med Biol; 1994; 366():29-41. PubMed ID: 7771259 [No Abstract] [Full Text] [Related]
12. DNA ligase I deficiency in Bloom's syndrome. Willis AE; Lindahl T Nature; 1987 Jan 22-28; 325(6102):355-7. PubMed ID: 3808031 [TBL] [Abstract][Full Text] [Related]
13. Two types of DNA ligase I activity in lymphoblastoid cells from patients with Bloom's syndrome. Kurihara T; Teraoka H; Inoue M; Takebe H; Tatsumi K Jpn J Cancer Res; 1991 Jan; 82(1):51-7. PubMed ID: 1900268 [TBL] [Abstract][Full Text] [Related]
14. Structural alterations of DNA ligase I in Bloom syndrome. Willis AE; Weksberg R; Tomlinson S; Lindahl T Proc Natl Acad Sci U S A; 1987 Nov; 84(22):8016-20. PubMed ID: 3479778 [TBL] [Abstract][Full Text] [Related]
15. 5-Bromodeoxyuridine-dependent increase in sister chromatid exchange formation in Bloom's syndrome is associated with reduction in topoisomerase II activity. Heartlein MW; Tsuji H; Latt SA Exp Cell Res; 1987 Mar; 169(1):245-54. PubMed ID: 3028845 [TBL] [Abstract][Full Text] [Related]