These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30634593)

  • 1. Semi-Empirical Force-Field Model for the Ti
    Almyras GA; Sangiovanni DG; Sarakinos K
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30634593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Al Content on the Wear Evolution of Ti
    Fan G; Zhang J; Zhang P; Du J; Xu C; Yi M; Zhang G
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Cutting Temperature during Turning Inconel 718 with (Ti,Al)N PVD Coated Cemented Carbide Tools.
    Zhao J; Liu Z; Shen Q; Wang B; Wang Q
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30044411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability and oxidation resistance of Ti-Al-N coatings.
    Chen L; Paulitsch J; Du Y; Mayrhofer PH
    Surf Coat Technol; 2012 Feb; 206-318(11-12):2954-2960. PubMed ID: 23471551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Stability and Elasticity of TiAlN.
    Abrikosov IA; Knutsson A; Alling B; Tasnádi F; Lind H; Hultman L; Odén M
    Materials (Basel); 2011 Sep; 4(9):1599-1618. PubMed ID: 28824159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method.
    Nouranian S; Tschopp MA; Gwaltney SR; Baskes MI; Horstemeyer MF
    Phys Chem Chem Phys; 2014 Apr; 16(13):6233-49. PubMed ID: 24566869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified embedded-atom method interatomic potential for the Fe-Al system.
    Lee E; Lee BJ
    J Phys Condens Matter; 2010 May; 22(17):175702. PubMed ID: 21393675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified Embedded-Atom Interatomic Potential Parameters of the Ti-Cr Binary and Ti-Cr-N Ternary Systems.
    Ding S; Li Y; Luo Y; Wu Z; Wang X
    Front Chem; 2021; 9():773015. PubMed ID: 34778218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method.
    Onat B; Durukanoğlu S
    J Phys Condens Matter; 2014 Jan; 26(3):035404. PubMed ID: 24351396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Field Study on the Spinodal Decomposition of β Phase in Zr-Nb-Ti Alloys.
    Yang K; Wang Y; Tang J; Wang Z; Zhang D; Dai Y; Lin J
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical, thermal, and physical properties of Mg-Ca compounds in the framework of the modified embedded-atom method.
    Groh S
    J Mech Behav Biomed Mater; 2015 Feb; 42():88-99. PubMed ID: 25460929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereometric analysis of Ti
    Matos RS; da Fonseca Filho HD; Das A; Kumar S; Chawla V; Ţălu Ş
    Microsc Res Tech; 2022 Jan; 85(1):296-307. PubMed ID: 34390538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
    Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model.
    Sun S; Ramachandran BR; Wick CD
    J Phys Condens Matter; 2018 Feb; 30(7):075002. PubMed ID: 29300188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Ordering and Decomposition in Ti-Al-X (X = Si, Zr) Alloys: Monte Carlo Modeling.
    Petrik M; Razumov I; Gornostyrev Y; Naschetnikova I; Popov A
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dynamics Simulations of PtTi High-Temperature Shape Memory Alloys Based on a Modified Embedded-Atom Method Interatomic Potential.
    Lee JS; Chun YB; Ko WS
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture toughness and structural evolution in the TiAlN system upon annealing.
    Bartosik M; Rumeau C; Hahn R; Zhang ZL; Mayrhofer PH
    Sci Rep; 2017 Nov; 7(1):16476. PubMed ID: 29184129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the transferability of classical pairwise additive atomistic force field to the description of unary and multi-component systems: applications to the solidification of Al-based alloys.
    Castillo-Sánchez JR; Rincent A; Gheribi AE; Harvey JP
    Phys Chem Chem Phys; 2022 Sep; 24(37):22605-22623. PubMed ID: 36102884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Survey of Ordering Configurations in MXene Alloys Across Compositions and Temperatures.
    Tan TL; Jin HM; Sullivan MB; Anasori B; Gogotsi Y
    ACS Nano; 2017 May; 11(5):4407-4418. PubMed ID: 28297600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.