These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30634957)

  • 1. SLIMEr: probing flexibility of lipid metabolism in yeast with an improved constraint-based modeling framework.
    Sánchez BJ; Li F; Kerkhoven EJ; Nielsen J
    BMC Syst Biol; 2019 Jan; 13(1):4. PubMed ID: 30634957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology.
    Paklao T; Suratanee A; Plaimas K
    BMC Bioinformatics; 2023 Dec; 24(1):492. PubMed ID: 38129786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. redLips: a comprehensive mechanistic model of the lipid metabolic network of yeast.
    Tsouka S; Hatzimanikatis V
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32068831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts.
    Scott WT; Smid EJ; Block DE; Notebaart RA
    Microb Cell Fact; 2021 Oct; 20(1):204. PubMed ID: 34674718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale model of Rhodotorula toruloides metabolism.
    Tiukova IA; Prigent S; Nielsen J; Sandgren M; Kerkhoven EJ
    Biotechnol Bioeng; 2019 Dec; 116(12):3396-3408. PubMed ID: 31502665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome scale models of yeast: towards standardized evaluation and consistent omic integration.
    Sánchez BJ; Nielsen J
    Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale modeling of yeast metabolism: retrospectives and perspectives.
    Chen Y; Li F; Nielsen J
    FEMS Yeast Res; 2022 Feb; 22(1):. PubMed ID: 35094064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges.
    Chen Y; Li G; Nielsen J
    Methods Mol Biol; 2019; 2049():329-345. PubMed ID: 31602620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism.
    Nookaew I; Jewett MC; Meechai A; Thammarongtham C; Laoteng K; Cheevadhanarak S; Nielsen J; Bhumiratana S
    BMC Syst Biol; 2008 Aug; 2():71. PubMed ID: 18687109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility of a eukaryotic lipidome--insights from yeast lipidomics.
    Klose C; Surma MA; Gerl MJ; Meyenhofer F; Shevchenko A; Simons K
    PLoS One; 2012; 7(4):e35063. PubMed ID: 22529973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale NAD(H/(+)) availability patterns as a differentiating feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in relation to fermentative metabolism.
    Acevedo A; Aroca G; Conejeros R
    PLoS One; 2014; 9(1):e87494. PubMed ID: 24489927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints.
    Sánchez BJ; Zhang C; Nilsson A; Lahtvee PJ; Kerkhoven EJ; Nielsen J
    Mol Syst Biol; 2017 Aug; 13(8):935. PubMed ID: 28779005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Modeling of Wine Fermentation at Genome Scale.
    Mendoza SN; Saa PA; Teusink B; Agosin E
    Methods Mol Biol; 2022; 2399():395-454. PubMed ID: 35604565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism.
    Lu H; Li F; Sánchez BJ; Zhu Z; Li G; Domenzain I; Marcišauskas S; Anton PM; Lappa D; Lieven C; Beber ME; Sonnenschein N; Kerkhoven EJ; Nielsen J
    Nat Commun; 2019 Aug; 10(1):3586. PubMed ID: 31395883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.
    Sánchez BJ; Pérez-Correa JR; Agosin E
    Metab Eng; 2014 Sep; 25():159-73. PubMed ID: 25046158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Analysis of the Cellular Lipidome of Saccharomyces Cerevisiae Using Liquid Chromatography Coupled with Tandem Mass Spectrometry.
    Mohammad K; Jiang H; Hossain MI; Titorenko VI
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H
    J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism.
    Tomàs-Gamisans M; Ferrer P; Albiol J
    PLoS One; 2016; 11(1):e0148031. PubMed ID: 26812499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast.
    Henry SA; Gaspar ML; Jesch SA
    Chem Phys Lipids; 2014 May; 180():23-43. PubMed ID: 24418527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.