BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30635372)

  • 21. Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension.
    Jeck N; Waldegger S; Lampert A; Boehmer C; Waldegger P; Lang PA; Wissinger B; Friedrich B; Risler T; Moehle R; Lang UE; Zill P; Bondy B; Schaeffeler E; Asante-Poku S; Seyberth H; Schwab M; Lang F
    Hypertension; 2004 Jun; 43(6):1175-81. PubMed ID: 15148291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo role of CLC chloride channels in the kidney.
    Uchida S
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F802-8. PubMed ID: 11053039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Barttin increases surface expression and changes current properties of ClC-K channels.
    Waldegger S; Jeck N; Barth P; Peters M; Vitzthum H; Wolf K; Kurtz A; Konrad M; Seyberth HW
    Pflugers Arch; 2002 Jun; 444(3):411-8. PubMed ID: 12111250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the conformation of a conserved glutamic acid within the Cl
    Vien M; Basilio D; Leisle L; Accardi A
    J Gen Physiol; 2017 Apr; 149(4):523-529. PubMed ID: 28246117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular physiology of renal ClC chloride channels/transporters.
    Sile S; Vanoye CG; George AL
    Curr Opin Nephrol Hypertens; 2006 Sep; 15(5):511-6. PubMed ID: 16914964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of interaction of niflumic acid with heterologously expressed kidney CLC-K chloride channels.
    Picollo A; Liantonio A; Babini E; Camerino DC; Pusch M
    J Membr Biol; 2007 Apr; 216(2-3):73-82. PubMed ID: 17659402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structural basis of ClC chloride channel function.
    Dutzler R
    Trends Neurosci; 2004 Jun; 27(6):315-20. PubMed ID: 15165735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion.
    Pusch M; Ludewig U; Rehfeldt A; Jentsch TJ
    Nature; 1995 Feb; 373(6514):527-31. PubMed ID: 7845466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3.
    Andrini O; Keck M; Briones R; Lourdel S; Vargas-Poussou R; Teulon J
    Am J Physiol Renal Physiol; 2015 Jun; 308(12):F1324-34. PubMed ID: 25810436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents.
    Friedrich T; Breiderhoff T; Jentsch TJ
    J Biol Chem; 1999 Jan; 274(2):896-902. PubMed ID: 9873029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Residues important for nitrate/proton coupling in plant and mammalian CLC transporters.
    Bergsdorf EY; Zdebik AA; Jentsch TJ
    J Biol Chem; 2009 Apr; 284(17):11184-93. PubMed ID: 19261613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion.
    Estévez R; Boettger T; Stein V; Birkenhäger R; Otto E; Hildebrandt F; Jentsch TJ
    Nature; 2001 Nov; 414(6863):558-61. PubMed ID: 11734858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels.
    Peters CJ; Yu H; Tien J; Jan YN; Li M; Jan LY
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3547-52. PubMed ID: 25733897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid.
    Liantonio A; Accardi A; Carbonara G; Fracchiolla G; Loiodice F; Tortorella P; Traverso S; Guida P; Pierno S; De Luca A; Camerino DC; Pusch M
    Mol Pharmacol; 2002 Aug; 62(2):265-71. PubMed ID: 12130677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigations of pharmacologic properties of the renal CLC-K1 chloride channel co-expressed with barttin by the use of 2-(p-Chlorophenoxy)propionic acid derivatives and other structurally unrelated chloride channels blockers.
    Liantonio A; Pusch M; Picollo A; Guida P; De Luca A; Pierno S; Fracchiolla G; Loiodice F; Tortorella P; Conte Camerino D
    J Am Soc Nephrol; 2004 Jan; 15(1):13-20. PubMed ID: 14694153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron.
    Hennings JC; Andrini O; Picard N; Paulais M; Huebner AK; Cayuqueo IK; Bignon Y; Keck M; Cornière N; Böhm D; Jentsch TJ; Chambrey R; Teulon J; Hübner CA; Eladari D
    J Am Soc Nephrol; 2017 Jan; 28(1):209-217. PubMed ID: 27335120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels.
    Chen MF; Chen TY
    J Gen Physiol; 2003 Aug; 122(2):133-45. PubMed ID: 12885875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surprises from an unusual CLC homolog.
    Phillips S; Brammer AE; Rodriguez L; Lim HH; Stary-Weinzinger A; Matulef K
    Biophys J; 2012 Nov; 103(9):L44-6. PubMed ID: 23199933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0.
    Ludewig U; Jentsch TJ; Pusch M
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):691-702. PubMed ID: 9051580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions.
    Ludewig U; Jentsch TJ; Pusch M
    J Gen Physiol; 1997 Aug; 110(2):165-71. PubMed ID: 9236209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.