BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30635415)

  • 1. Biohybrid valveless pump-bot powered by engineered skeletal muscle.
    Li Z; Seo Y; Aydin O; Elhebeary M; Kamm RD; Kong H; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1543-1548. PubMed ID: 30635415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive biohybrid pumping machine with flow loop feedback.
    Li Z; Balance WC; Joy MSH; Patel S; Hwang J; Kong H; Saif MTA
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35045402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances.
    Longatti P
    Childs Nerv Syst; 2018 Feb; 34(2):227-233. PubMed ID: 29124390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric Elastomer Actuator-Based Valveless Impedance-Driven Pumping for Meso- and Macroscale Applications.
    Benouhiba A; Walter A; Jahren SE; Martinez T; Clavica F; Obrist D; Civet Y; Perriard Y
    Soft Robot; 2024 Apr; 11(2):198-206. PubMed ID: 37729065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation.
    Anatol J; García-Díaz M; Barrios-Collado C; Moneo-Fernández JA; Horvath M; Parra T; Castro-Ruiz F; Roche ET; Sierra-Pallares J
    Sci Rep; 2022 Dec; 12(1):22165. PubMed ID: 36550224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart.
    Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D
    J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of a viscoelastic valveless pump: a simple theory with experimental validation.
    Babbs CF
    Biomed Eng Online; 2010 Aug; 9():42. PubMed ID: 20807440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Analysis of a Cardioid Flow Tube Valveless Piezoelectric Pump for Medical Applications.
    Wang J; Zhang F; Gui Z; Wen Y; Zeng Y; Xie T; Tan T; Chen B; Zhang J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies.
    Davtyan R; Sarvazyan NA
    Sci Rep; 2021 Jun; 11(1):11505. PubMed ID: 34075100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-generating capability of the isolated skeletal muscle pump.
    Sheriff DD; Van Bibber R
    Am J Physiol; 1998 May; 274(5):H1502-8. PubMed ID: 9612356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular actuation of biohybrid motile bots.
    Aydin O; Zhang X; Nuethong S; Pagan-Diaz GJ; Bashir R; Gazzola M; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19841-19847. PubMed ID: 31527266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.
    Hiermeier F; Männer J
    J Cardiovasc Dev Dis; 2017 Nov; 4(4):. PubMed ID: 29367548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vitro investigation of a potential wave pumping effect in human aorta.
    Pahlevan NM; Gharib M
    J Biomech; 2013 Sep; 46(13):2122-9. PubMed ID: 23915578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensionally printed biological machines powered by skeletal muscle.
    Cvetkovic C; Raman R; Chan V; Williams BJ; Tolish M; Bajaj P; Sakar MS; Asada HH; Saif MT; Bashir R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10125-30. PubMed ID: 24982152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel, valveless ventricular assist device: the FishTail pump. First experimental in vivo studies.
    Feier H; Mekkaoui C; Drevet JB; Sérée Y; Richomme C; Rolland PH; Mesana TG
    Artif Organs; 2002 Dec; 26(12):1026-31. PubMed ID: 12460380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion.
    Dobson JL; Gladden LB
    J Appl Physiol (1985); 2003 Jan; 94(1):11-9. PubMed ID: 12391133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube.
    Taber LA; Zhang J; Perucchio R
    J Biomech Eng; 2007 Jun; 129(3):441-9. PubMed ID: 17536912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohybrid tensegrity actuator driven by selective contractions of multiple skeletal muscle tissues.
    Morita K; Morimoto Y; Takeuchi S
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37385238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.