These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30635558)

  • 21. Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends.
    Ortiz JR; Zhou H; Shay DK; Neuzil KM; Fowlkes AL; Goss CH
    PLoS One; 2011 Apr; 6(4):e18687. PubMed ID: 21556151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cumulative query method for influenza surveillance using search engine data.
    Seo DW; Jo MW; Sohn CH; Shin SY; Lee J; Yu M; Kim WY; Lim KS; Lee SI
    J Med Internet Res; 2014 Dec; 16(12):e289. PubMed ID: 25517353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic.
    Cook S; Conrad C; Fowlkes AL; Mohebbi MH
    PLoS One; 2011; 6(8):e23610. PubMed ID: 21886802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Using Google Trends to estimate the incidence of influenza-like illness in Argentina].
    Orellano PW; Reynoso JI; Antman J; Argibay O
    Cad Saude Publica; 2015 Apr; 31(4):691-700. PubMed ID: 25945979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. United States Influenza Search Patterns Since the Emergence of COVID-19: Infodemiology Study.
    Cai O; Sousa-Pinto B
    JMIR Public Health Surveill; 2022 Mar; 8(3):e32364. PubMed ID: 34878996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long Short-term Memory-Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation.
    Athanasiou M; Fragkozidis G; Zarkogianni K; Nikita KS
    J Med Internet Res; 2023 Feb; 25():e42519. PubMed ID: 36745490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporating connectivity among Internet search data for enhanced influenza-like illness tracking.
    Ning S; Hussain A; Wang Q
    PLoS One; 2024; 19(8):e0305579. PubMed ID: 39186560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloud-based Electronic Health Records for Real-time, Region-specific Influenza Surveillance.
    Santillana M; Nguyen AT; Louie T; Zink A; Gray J; Sung I; Brownstein JS
    Sci Rep; 2016 May; 6():25732. PubMed ID: 27165494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surveilling Influenza Incidence With Centers for Disease Control and Prevention Web Traffic Data: Demonstration Using a Novel Dataset.
    Caldwell WK; Fairchild G; Del Valle SY
    J Med Internet Res; 2020 Jul; 22(7):e14337. PubMed ID: 32437327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of eHealth data sources in local influenza surveillance: a 5-year open cohort study.
    Timpka T; Spreco A; Dahlström Ö; Eriksson O; Gursky E; Ekberg J; Blomqvist E; Strömgren M; Karlsson D; Eriksson H; Nyce J; Hinkula J; Holm E
    J Med Internet Res; 2014 Apr; 16(4):e116. PubMed ID: 24776527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of daily Internet search query data improves real-time projections of influenza epidemics.
    Zimmer C; Leuba SI; Yaesoubi R; Cohen T
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30305417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
    Volkova S; Ayton E; Porterfield K; Corley CD
    PLoS One; 2017; 12(12):e0188941. PubMed ID: 29244814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A better prediction model for patient surges from influenza? New Internet-based tool shows promise, say researchers.
    ED Manag; 2012 Mar; 24(3):29-30. PubMed ID: 23687735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time.
    McIver DJ; Brownstein JS
    PLoS Comput Biol; 2014 Apr; 10(4):e1003581. PubMed ID: 24743682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Respiratory syncytial virus tracking using internet search engine data.
    Oren E; Frere J; Yom-Tov E; Yom-Tov E
    BMC Public Health; 2018 Apr; 18(1):445. PubMed ID: 29615018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influenza Virus: Tracking, Predicting, and Forecasting.
    Ali ST; Cowling BJ
    Annu Rev Public Health; 2021 Apr; 42():43-57. PubMed ID: 33348997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data.
    Rangarajan P; Mody SK; Marathe M
    PLoS Comput Biol; 2019 Nov; 15(11):e1007518. PubMed ID: 31751346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time estimation of disease activity in emerging outbreaks using internet search information.
    Aiken EL; McGough SF; Majumder MS; Wachtel G; Nguyen AT; Viboud C; Santillana M
    PLoS Comput Biol; 2020 Aug; 16(8):e1008117. PubMed ID: 32804932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using clinicians' search query data to monitor influenza epidemics.
    Santillana M; Nsoesie EO; Mekaru SR; Scales D; Brownstein JS
    Clin Infect Dis; 2014 Nov; 59(10):1446-50. PubMed ID: 25115873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Integrated Influenza Surveillance Framework Based on National Influenza-Like Illness Incidence and Multiple Hospital Electronic Medical Records for Early Prediction of Influenza Epidemics: Design and Evaluation.
    Yang CY; Chen RJ; Chou WL; Lee YJ; Lo YS
    J Med Internet Res; 2019 Feb; 21(2):e12341. PubMed ID: 30707099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.