These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
11. Autosomal dominant nanophthalmos and high hyperopia associated with a C-terminal frameshift variant in Siggs OM; Souzeau E; Breen J; Qassim A; Zhou T; Dubowsky A; Ruddle JB; Craig JE Mol Vis; 2019; 25():527-534. PubMed ID: 31700225 [TBL] [Abstract][Full Text] [Related]
12. TULP1 Missense Mutations Induces the Endoplasmic Reticulum Unfolded Protein Response Stress Complex (ER-UPR). Lobo GP; Ebke LA; Au A; Hagstrom SA Adv Exp Med Biol; 2016; 854():223-30. PubMed ID: 26427415 [TBL] [Abstract][Full Text] [Related]
13. Selective activation of ATF6 and PERK endoplasmic reticulum stress signaling pathways prevent mutant rhodopsin accumulation. Chiang WC; Hiramatsu N; Messah C; Kroeger H; Lin JH Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7159-66. PubMed ID: 22956602 [TBL] [Abstract][Full Text] [Related]
14. Identification of a rhodopsin gene mutation in a large family with autosomal dominant retinitis pigmentosa. Yu X; Shi W; Cheng L; Wang Y; Chen D; Hu X; Xu J; Xu L; Wu Y; Qu J; Gu F Sci Rep; 2016 Jan; 6():19759. PubMed ID: 26794436 [TBL] [Abstract][Full Text] [Related]
15. Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa. Wang T; Yao J; Jia L; Fort PE; Zacks DN Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008496 [TBL] [Abstract][Full Text] [Related]
16. The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Yoshida T; Ozawa Y; Suzuki K; Yuki K; Ohyama M; Akamatsu W; Matsuzaki Y; Shimmura S; Mitani K; Tsubota K; Okano H Mol Brain; 2014 Jun; 7():45. PubMed ID: 24935155 [TBL] [Abstract][Full Text] [Related]
17. Molecular analysis of the rhodopsin gene in southern France: identification of the first duplication responsible for retinitis pigmentosa, c.998999ins4. Bareil C; Hamel C; Pallarès-Ruiz N; Arnaud B; Demaille J; Claustres M Ophthalmic Genet; 1999 Sep; 20(3):173-82. PubMed ID: 10521250 [TBL] [Abstract][Full Text] [Related]
18. Variants in myelin regulatory factor (MYRF) cause autosomal dominant and syndromic nanophthalmos in humans and retinal degeneration in mice. Garnai SJ; Brinkmeier ML; Emery B; Aleman TS; Pyle LC; Veleva-Rotse B; Sisk RA; Rozsa FW; Ozel AB; Li JZ; Moroi SE; Archer SM; Lin CM; Sheskey S; Wiinikka-Buesser L; Eadie J; Urquhart JE; Black GCM; Othman MI; Boehnke M; Sullivan SA; Skuta GL; Pawar HS; Katz AE; Huryn LA; Hufnagel RB; ; Camper SA; Richards JE; Prasov L PLoS Genet; 2019 May; 15(5):e1008130. PubMed ID: 31048900 [TBL] [Abstract][Full Text] [Related]
19. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Athanasiou D; Aguila M; Bellingham J; Li W; McCulley C; Reeves PJ; Cheetham ME Prog Retin Eye Res; 2018 Jan; 62():1-23. PubMed ID: 29042326 [TBL] [Abstract][Full Text] [Related]
20. The genetic and clinical landscape of nanophthalmos and posterior microphthalmos in an Australian cohort. Siggs OM; Awadalla MS; Souzeau E; Staffieri SE; Kearns LS; Laurie K; Kuot A; Qassim A; Edwards TL; Coote MA; Mancel E; Walland MJ; Dondey J; Galanopoulous A; Casson RJ; Mills RA; MacArthur DG; Ruddle JB; Burdon KP; Craig JE Clin Genet; 2020 May; 97(5):764-769. PubMed ID: 32052405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]