BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30635953)

  • 1. Transplacental delivery of genome editing components causes mutations in embryonic cardiomyocytes of mid-gestational murine fetuses.
    Nakamura S; Ishihara M; Ando N; Watanabe S; Sakurai T; Sato M
    IUBMB Life; 2019 Jul; 71(7):835-844. PubMed ID: 30635953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics-Based Transplacental Delivery as a Useful Noninvasive Tool for Manipulating Fetal Genome.
    Nakamura S; Ando N; Watanabe S; Akasaka E; Ishihara M; Sato M
    Cells; 2020 Jul; 9(7):. PubMed ID: 32708213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA.
    Zhang X; Jin H; Huang X; Chaurasiya B; Dong D; Shanley TP; Zhao YY
    Cell Rep; 2022 Jan; 38(1):110196. PubMed ID: 34986352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Ryr2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia.
    Pan X; Philippen L; Lahiri SK; Lee C; Park SH; Word TA; Li N; Jarrett KE; Gupta R; Reynolds JO; Lin J; Bao G; Lagor WR; Wehrens XHT
    Circ Res; 2018 Sep; 123(8):953-963. PubMed ID: 30355031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles.
    Liu J; Chang J; Jiang Y; Meng X; Sun T; Mao L; Xu Q; Wang M
    Adv Mater; 2019 Aug; 31(33):e1902575. PubMed ID: 31215123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaffold-Based Delivery of CRISPR/Cas9 Ribonucleoproteins for Genome Editing.
    Chooi WH; Chin JS; Chew SY
    Methods Mol Biol; 2021; 2211():183-191. PubMed ID: 33336278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.
    Zhang S; Shen J; Li D; Cheng Y
    Theranostics; 2021; 11(2):614-648. PubMed ID: 33391496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
    Steyer B; Carlson-Stevermer J; Angenent-Mari N; Khalil A; Harkness T; Saha K
    Acta Biomater; 2016 Apr; 34():143-158. PubMed ID: 26747759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing.
    Chen G; Abdeen AA; Wang Y; Shahi PK; Robertson S; Xie R; Suzuki M; Pattnaik BR; Saha K; Gong S
    Nat Nanotechnol; 2019 Oct; 14(10):974-980. PubMed ID: 31501532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-inheritable maternal Cas9-based multiple-gene editing system in mice.
    Sakurai T; Kamiyoshi A; Kawate H; Mori C; Watanabe S; Tanaka M; Uetake R; Sato M; Shindo T
    Sci Rep; 2016 Jan; 6():20011. PubMed ID: 26817415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an in vivo delivery system for CRISPR/Cas9-mediated targeting of hepatitis B virus cccDNA.
    Kayesh MEH; Amako Y; Hashem MA; Murakami S; Ogawa S; Yamamoto N; Hifumi T; Miyoshi N; Sugiyama M; Tanaka Y; Mizokami M; Kohara M; Tsukiyama-Kohara K
    Virus Res; 2020 Dec; 290():198191. PubMed ID: 33049308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoter Orientation within an AAV-CRISPR Vector Affects Cas9 Expression and Gene Editing Efficiency.
    Fry LE; Peddle CF; Stevanovic M; Barnard AR; McClements ME; MacLaren RE
    CRISPR J; 2020 Aug; 3(4):276-283. PubMed ID: 32833533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the Delivery System for CRISPR-Based Genome Editing.
    Glass Z; Lee M; Li Y; Xu Q
    Trends Biotechnol; 2018 Feb; 36(2):173-185. PubMed ID: 29305085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.