These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30635963)
21. CoO Odynets IV; Strutynska NY; Li J; Han W; Zatovsky IV; Klyui NI Dalton Trans; 2018 Nov; 47(44):15703-15713. PubMed ID: 30346012 [TBL] [Abstract][Full Text] [Related]
22. Interface Engineering of MoS2 /Ni3 S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. Zhang J; Wang T; Pohl D; Rellinghaus B; Dong R; Liu S; Zhuang X; Feng X Angew Chem Int Ed Engl; 2016 Jun; 55(23):6702-7. PubMed ID: 27100374 [TBL] [Abstract][Full Text] [Related]
23. Molybdenum Carbide-Embedded Multichannel Hollow Carbon Nanofibers as Bifunctional Catalysts for Water Splitting. Ji C; Yang G; Ilango PR; Song J; Yu D; Han S; Zhang D; Li L; Peng S Chem Asian J; 2020 Jul; 15(13):1957-1962. PubMed ID: 32367613 [TBL] [Abstract][Full Text] [Related]
24. Convenient Immobilization of Cobalt Corroles on Carbon Nanotubes through Covalent Bonds for Electrocatalytic Hydrogen and Oxygen Evolution Reactions. Li H; Li X; Lei H; Zhou G; Zhang W; Cao R ChemSusChem; 2019 Feb; 12(4):801-806. PubMed ID: 30575300 [TBL] [Abstract][Full Text] [Related]
25. Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting. Rajeshkhanna G; Singh TI; Kim NH; Lee JH ACS Appl Mater Interfaces; 2018 Dec; 10(49):42453-42468. PubMed ID: 30430830 [TBL] [Abstract][Full Text] [Related]
26. Self-Supporting Co/CeO Chen H; Huang HB; Li HH; Zhao SZ; Wang LD; Zhang J; Zhong SL; Lao CF; Cao LM; He CT Inorg Chem; 2023 Feb; 62(7):3297-3304. PubMed ID: 36758163 [TBL] [Abstract][Full Text] [Related]
27. General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution. Pu Z; Zhang C; Amiinu IS; Li W; Wu L; Mu S ACS Appl Mater Interfaces; 2017 May; 9(19):16187-16193. PubMed ID: 28452469 [TBL] [Abstract][Full Text] [Related]
28. Nanostructured Nickel-Cobalt-Titanium Alloy Grown on Titanium Substrate as Efficient Electrocatalyst for Alkaline Water Electrolysis. Ganesan P; Sivanantham A; Shanmugam S ACS Appl Mater Interfaces; 2017 Apr; 9(14):12416-12426. PubMed ID: 28337912 [TBL] [Abstract][Full Text] [Related]
29. Nanoporous Sulfur-Doped Copper Oxide (Cu Zhang X; Cui X; Sun Y; Qi K; Jin Z; Wei S; Li W; Zhang L; Zheng W ACS Appl Mater Interfaces; 2018 Jan; 10(1):745-752. PubMed ID: 29265797 [TBL] [Abstract][Full Text] [Related]
30. Hierarchical β-Mo2 C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. Ma FX; Wu HB; Xia BY; Xu CY; Lou XW Angew Chem Int Ed Engl; 2015 Dec; 54(51):15395-9. PubMed ID: 26527481 [TBL] [Abstract][Full Text] [Related]
31. Integrating a metal framework with Co-confined carbon nanotubes as trifunctional electrocatalysts to boost electron and mass transfer approaching practical applications. Zhou X; Leng X; Ling C; Chong H; Xu AW; Yang Z Nanoscale; 2021 Aug; 13(29):12651-12658. PubMed ID: 34477615 [TBL] [Abstract][Full Text] [Related]
32. Transition-Metal Phosphide-Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. Zhai M; Wang F; Du H ACS Appl Mater Interfaces; 2017 Nov; 9(46):40171-40179. PubMed ID: 29098858 [TBL] [Abstract][Full Text] [Related]
33. Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. Hou CC; Cao S; Fu WF; Chen Y ACS Appl Mater Interfaces; 2015 Dec; 7(51):28412-9. PubMed ID: 26642257 [TBL] [Abstract][Full Text] [Related]
34. Electrospinning Hetero-Nanofibers of Fe Lin H; Zhang W; Shi Z; Che M; Yu X; Tang Y; Gao Q ChemSusChem; 2017 Jun; 10(12):2597-2604. PubMed ID: 28371425 [TBL] [Abstract][Full Text] [Related]
35. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Su Y; Zhu Y; Jiang H; Shen J; Yang X; Zou W; Chen J; Li C Nanoscale; 2014 Dec; 6(24):15080-9. PubMed ID: 25369741 [TBL] [Abstract][Full Text] [Related]
36. Innovative Strategies for Electrocatalytic Water Splitting. You B; Sun Y Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825 [TBL] [Abstract][Full Text] [Related]
37. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Tian GL; Zhao MQ; Yu D; Kong XY; Huang JQ; Zhang Q; Wei F Small; 2014 Jun; 10(11):2251-9. PubMed ID: 24574006 [TBL] [Abstract][Full Text] [Related]
38. One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting. Cheng Y; Liu C; Cheng HM; Jiang SP ACS Appl Mater Interfaces; 2014 Jul; 6(13):10089-98. PubMed ID: 24927372 [TBL] [Abstract][Full Text] [Related]
39. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Jiang N; You B; Sheng M; Sun Y Angew Chem Int Ed Engl; 2015 May; 54(21):6251-4. PubMed ID: 25900260 [TBL] [Abstract][Full Text] [Related]
40. Cobalt-Doped Perovskite-Type Oxide LaMnO Liu X; Gong H; Wang T; Guo H; Song L; Xia W; Gao B; Jiang Z; Feng L; He J Chem Asian J; 2018 Mar; 13(5):528-535. PubMed ID: 29319240 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]