BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30636008)

  • 1. Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing mammalian cerebral neocortex.
    Shin M; Kitazawa A; Yoshinaga S; Hayashi K; Hirata Y; Dehay C; Kubo KI; Nakajima K
    J Comp Neurol; 2019 Jul; 527(10):1577-1597. PubMed ID: 30636008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent "inside-out" lamination in the neocortex.
    Sekine K; Honda T; Kawauchi T; Kubo K; Nakajima K
    J Neurosci; 2011 Jun; 31(25):9426-39. PubMed ID: 21697392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in cortical interneuron migration contribute to the evolution of the neocortex.
    Tanaka DH; Oiwa R; Sasaki E; Nakajima K
    Proc Natl Acad Sci U S A; 2011 May; 108(19):8015-20. PubMed ID: 21518872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.
    Ji L; Bishayee K; Sadra A; Choi S; Choi W; Moon S; Jho EH; Huh SO
    Neuroscience; 2017 Jul; 355():126-140. PubMed ID: 28501506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neocortical neurogenesis and neuronal migration.
    Tan X; Shi SH
    Wiley Interdiscip Rev Dev Biol; 2013 Jul; 2(4):443-59. PubMed ID: 24014417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reelin transiently promotes N-cadherin-dependent neuronal adhesion during mouse cortical development.
    Matsunaga Y; Noda M; Murakawa H; Hayashi K; Nagasaka A; Inoue S; Miyata T; Miura T; Kubo KI; Nakajima K
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):2048-2053. PubMed ID: 28174271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortico-cerebral histogenesis in the opossum Monodelphis domestica: generation of a hexalaminar neocortex in the absence of a basal proliferative compartment.
    Puzzolo E; Mallamaci A
    Neural Dev; 2010 Mar; 5():8. PubMed ID: 20302607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive branching of radially-migrating neurons in the mammalian cerebral cortex.
    Martínez-Martínez MÁ; Ciceri G; Espinós A; Fernández V; Marín O; Borrell V
    J Comp Neurol; 2019 Jul; 527(10):1558-1576. PubMed ID: 30520050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that Sema3A and Sema3F regulate the migration of GABAergic neurons in the developing neocortex.
    Tamamaki N; Fujimori K; Nojyo Y; Kaneko T; Takauji R
    J Comp Neurol; 2003 Jan; 455(2):238-48. PubMed ID: 12454988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex.
    Kwan KY; Sestan N; Anton ES
    Development; 2012 May; 139(9):1535-46. PubMed ID: 22492350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tangential migration and proliferation of intermediate progenitors of GABAergic neurons in the mouse telencephalon.
    Wu S; Esumi S; Watanabe K; Chen J; Nakamura KC; Nakamura K; Kometani K; Minato N; Yanagawa Y; Akashi K; Sakimura K; Kaneko T; Tamamaki N
    Development; 2011 Jun; 138(12):2499-509. PubMed ID: 21561989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interneurons in the developing human neocortex.
    Zecevic N; Hu F; Jakovcevski I
    Dev Neurobiol; 2011 Jan; 71(1):18-33. PubMed ID: 21154907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic transmission from subplate neurons controls radial migration of neocortical neurons.
    Ohtaka-Maruyama C; Okamoto M; Endo K; Oshima M; Kaneko N; Yura K; Okado H; Miyata T; Maeda N
    Science; 2018 Apr; 360(6386):313-317. PubMed ID: 29674592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migratory pathways of GABAergic interneurons when they enter the neocortex.
    Tanaka DH; Nakajima K
    Eur J Neurosci; 2012 Jun; 35(11):1655-60. PubMed ID: 22639844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clonal production and organization of inhibitory interneurons in the neocortex.
    Brown KN; Chen S; Han Z; Lu CH; Tan X; Zhang XJ; Ding L; Lopez-Cruz A; Saur D; Anderson SA; Huang K; Shi SH
    Science; 2011 Oct; 334(6055):480-6. PubMed ID: 22034427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration.
    Hevner RF; Daza RA; Englund C; Kohtz J; Fink A
    Neuroscience; 2004; 124(3):605-18. PubMed ID: 14980731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis.
    Macklis JD
    J Neurosci; 1993 Sep; 13(9):3848-63. PubMed ID: 8366349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex.
    Akil M; Lewis DA
    Exp Neurol; 1992 Feb; 115(2):239-49. PubMed ID: 1735469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neocortical cell migration: GABAergic neurons and cells in layers I and VI move in a cyclin-dependent kinase 5-independent manner.
    Gilmore EC; Herrup K
    J Neurosci; 2001 Dec; 21(24):9690-700. PubMed ID: 11739578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.