These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30636063)

  • 1. Investigation of inner ear anatomy in mouse using X-ray phase contrast tomography.
    Yin HX; Zhang P; Wang Z; Liu YF; Liu Y; Xiao TQ; Yang ZH; Xian JF; Zhao PF; Li J; Lv H; Ding HY; Liu XH; Zhu JM; Wang ZC
    Microsc Res Tech; 2019 Jul; 82(7):953-960. PubMed ID: 30636063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Computed tomography and magnetic resonance tomography of the normal temporal bone].
    Czerny C; Franz P; Imhof H
    Radiologe; 2003 Mar; 43(3):200-6. PubMed ID: 12664234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging microscopy of the middle and inner ear: Part I: CT microscopy.
    Lane JI; Witte RJ; Driscoll CL; Camp JJ; Robb RA
    Clin Anat; 2004 Nov; 17(8):607-12. PubMed ID: 15495168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic identification and 3D rendering of temporal bone anatomy.
    Noble JH; Dawant BM; Warren FM; Labadie RF
    Otol Neurotol; 2009 Jun; 30(4):436-42. PubMed ID: 19339909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach to visualizing the membranous structures of the inner ear - high resolution X-ray micro-tomography.
    Uzun H; Curthoys IS; Jones AS
    Acta Otolaryngol; 2007 Jun; 127(6):568-73. PubMed ID: 17503224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human inner ear blood supply revisited: the Uppsala collection of temporal bone-an international resource of education and collaboration.
    Mei X; Atturo F; Wadin K; Larsson S; Agrawal S; Ladak HM; Li H; Rask-Andersen H
    Ups J Med Sci; 2018 Sep; 123(3):131-142. PubMed ID: 30204028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique.
    McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T
    Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle and inner ear: improved depiction with multiplanar reconstruction of volumetric CT data.
    Lane JI; Lindell EP; Witte RJ; DeLone DR; Driscoll CL
    Radiographics; 2006; 26(1):115-24. PubMed ID: 16418247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution imaging of the mouse inner ear by microtomography: a new tool in inner ear research.
    Van Spaendonck MP; Cryns K; Van De Heyning PH; Scheuermann DW; Van Camp G; Timmermans JP
    Anat Rec; 2000 Jun; 259(2):229-36. PubMed ID: 10820324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic measurement of the labyrinth using image registration and a deformable inner ear atlas.
    Christensen GE; He J; Dill JA; Rubinstein JT; Vannier MW; Wang G
    Acad Radiol; 2003 Sep; 10(9):988-99. PubMed ID: 13678087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium functional imaging with high-resolution CT in the inner ear.
    Tanioka H; Tanioka S
    Sci Rep; 2021 Jul; 11(1):15253. PubMed ID: 34315997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron probe X-ray microanalysis of otoconia in guinea pig inner ear: a comparison between young and old animals.
    Takumida M; Zhang DM
    Acta Otolaryngol; 1997 Jul; 117(4):529-37. PubMed ID: 9288208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normative inner ear volumetric measurements.
    Teixido MT; Kirkilas G; Seymour P; Sem K; Iaia A; Sabra O; Isildak H
    J Craniofac Surg; 2015 Jan; 26(1):251-4. PubMed ID: 25490572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A morphometric study of the pallid mutant mouse inner ear.
    Trune DR; Lim DJ
    Am J Otolaryngol; 1983; 4(4):261-72. PubMed ID: 6605096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction based on images from spiral high-resolution computed tomography of the temporal bone: anatomy and clinical application.
    Jun BC; Song SW; Cho JE; Park CS; Lee DH; Chang KH; Yeo SW
    J Laryngol Otol; 2005 Sep; 119(9):693-8. PubMed ID: 16156909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Diagnostic value of high-resolution computed tomography imaging in congenital inner ear malformations].
    Sun X; Ding Y; Zhang J; Chen Y; Xu A; Dou F; Zhang Z
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2007 Feb; 21(4):154-6. PubMed ID: 17511171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths.
    Schulz-Mirbach T; Ladich F; Plath M; Heß M
    Biol Rev Camb Philos Soc; 2019 Apr; 94(2):457-482. PubMed ID: 30239135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution MR images of inner ear internal anatomy using a local gradient coil at 1.5 Tesla: correlation with histological specimen.
    Ito T; Naganawa S; Fukatsu H; Ishiguchi T; Ishigaki T; Kobayashi M; Kobayashi K; Ichinose N; Miyazaki M; Kassai Y
    Radiat Med; 1999; 17(5):343-7. PubMed ID: 10593283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of inner ear structures: a micro-CT study.
    Geneci F; Uzuner MB; Bilecenoğlu B; Torun Bİ; Orhan K; Ocak M
    Acta Otolaryngol; 2022 Jan; 142(1):1-5. PubMed ID: 34985378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional analysis of morphological aspects of the human utricular macula.
    Naganuma H; Tokumasu K; Okamoto M; Hashimoto S; Yamashina S
    Ann Otol Rhinol Laryngol; 2003 May; 112(5):419-24. PubMed ID: 12784980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.