These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30636149)

  • 1. Operational Magic Intensity for Sr Optical Lattice Clocks.
    Ushijima I; Takamoto M; Katori H
    Phys Rev Lett; 2018 Dec; 121(26):263202. PubMed ID: 30636149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock.
    Porsev SG; Safronova MS; Safronova UI; Kozlov MG
    Phys Rev Lett; 2018 Feb; 120(6):063204. PubMed ID: 29481257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock.
    Brown RC; Phillips NB; Beloy K; McGrew WF; Schioppo M; Fasano RJ; Milani G; Zhang X; Hinkley N; Leopardi H; Yoon TH; Nicolodi D; Fortier TM; Ludlow AD
    Phys Rev Lett; 2017 Dec; 119(25):253001. PubMed ID: 29303326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation of the multipolar polarizability shift in optical lattice clocks.
    Golovizin A
    Opt Lett; 2024 Jun; 49(11):3094-3097. PubMed ID: 38824336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects for optical clocks with a blue-detuned lattice.
    Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magic wavelength to make optical lattice clocks insensitive to atomic motion.
    Katori H; Hashiguchi K; Il'inova EY; Ovsiannikov VD
    Phys Rev Lett; 2009 Oct; 103(15):153004. PubMed ID: 19905634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperpolarizability effects in a Sr optical lattice clock.
    Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P
    Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10(-17) level.
    Westergaard PG; Lodewyck J; Lorini L; Lecallier A; Burt EA; Zawada M; Millo J; Lemonde P
    Phys Rev Lett; 2011 May; 106(21):210801. PubMed ID: 21699284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoionization cross sections of ultracold
    Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M
    Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute polarization measurement using a vector light shift.
    Zhu K; Solmeyer N; Tang C; Weiss DS
    Phys Rev Lett; 2013 Dec; 111(24):243006. PubMed ID: 24483655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty Evaluation of an
    Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Lattice Light Shift at Low 10^{-19} Uncertainty for a Shallow Lattice Sr Optical Clock.
    Kim K; Aeppli A; Bothwell T; Ye J
    Phys Rev Lett; 2023 Mar; 130(11):113203. PubMed ID: 37001111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.
    Taichenachev AV; Yudin VI; Oates CW; Hoyt CW; Barber ZW; Hollberg L
    Phys Rev Lett; 2006 Mar; 96(8):083001. PubMed ID: 16606175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triply Magic Conditions for Microwave Transition of Optically Trapped Alkali-Metal Atoms.
    Li G; Tian Y; Wu W; Li S; Li X; Liu Y; Zhang P; Zhang T
    Phys Rev Lett; 2019 Dec; 123(25):253602. PubMed ID: 31922798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons.
    Lisdat Ch; Winfred JS; Middelmann T; Riehle F; Sterr U
    Phys Rev Lett; 2009 Aug; 103(9):090801. PubMed ID: 19792777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit.
    Yamanaka K; Ohmae N; Ushijima I; Takamoto M; Katori H
    Phys Rev Lett; 2015 Jun; 114(23):230801. PubMed ID: 26196788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.