BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30636280)

  • 21. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis.
    Nagai H; Masuda A; Toya Y; Matsuda F; Shimizu H
    Metab Eng; 2018 May; 47():1-9. PubMed ID: 29499375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Examining
    Hollinshead WD; Rodriguez S; Martin HG; Wang G; Baidoo EE; Sale KL; Keasling JD; Mukhopadhyay A; Tang YJ
    Biotechnol Biofuels; 2016; 9():212. PubMed ID: 27766116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
    Chin JW; Cirino PC
    Biotechnol Prog; 2011; 27(2):333-41. PubMed ID: 21344680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction and evolution of an
    Lin PP; Jaeger AJ; Wu TY; Xu SC; Lee AS; Gao F; Chen PW; Liao JC
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3538-3546. PubMed ID: 29555759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates.
    Korman TP; Sahachartsiri B; Li D; Vinokur JM; Eisenberg D; Bowie JU
    Protein Sci; 2014 May; 23(5):576-85. PubMed ID: 24623472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of mevalonate by a metabolically-engineered Escherichia coli.
    Tabata K; Hashimoto S
    Biotechnol Lett; 2004 Oct; 26(19):1487-91. PubMed ID: 15604784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Escherichia coli for enhanced production of 1,3-butanediol from glucose.
    Islam T; Nguyen-Vo TP; Cho S; Lee J; Gaur VK; Park S
    Bioresour Technol; 2023 Dec; 389():129814. PubMed ID: 37783239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli.
    Liu CL; Dong HG; Zhan J; Liu X; Yang Y
    J Appl Microbiol; 2019 Apr; 126(4):1128-1139. PubMed ID: 30656788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.
    He L; Xiao Y; Gebreselassie N; Zhang F; Antoniewiez MR; Tang YJ; Peng L
    Biotechnol Bioeng; 2014 Mar; 111(3):575-85. PubMed ID: 24122357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli.
    Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y
    Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum.
    Jojima T; Igari T; Noburyu R; Watanabe A; Suda M; Inui M
    Biotechnol Biofuels; 2021 Feb; 14(1):45. PubMed ID: 33593398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth.
    Wilkes RA; Waldbauer J; Aristilde L
    mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production.
    Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z
    ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering a Central Carbon Metabolism Pathway to Increase the Intracellular Acetyl-CoA Pool in
    Song X; Diao J; Yao J; Cui J; Sun T; Chen L; Zhang W
    ACS Synth Biol; 2021 Apr; 10(4):836-846. PubMed ID: 33779148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-production of hydrogen and ethanol from glucose in
    Sundara Sekar B; Seol E; Park S
    Biotechnol Biofuels; 2017; 10():85. PubMed ID: 28360941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remodeling of Carbon Metabolism during Sulfoglycolysis in Escherichia coli.
    Mui JW; De Souza DP; Saunders EC; McConville MJ; Williams SJ
    Appl Environ Microbiol; 2023 Feb; 89(2):e0201622. PubMed ID: 36728421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli.
    Pitera DJ; Paddon CJ; Newman JD; Keasling JD
    Metab Eng; 2007 Mar; 9(2):193-207. PubMed ID: 17239639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress.
    Christodoulou D; Link H; Fuhrer T; Kochanowski K; Gerosa L; Sauer U
    Cell Syst; 2018 May; 6(5):569-578.e7. PubMed ID: 29753645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.