BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30636283)

  • 41. Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity.
    Lin H; Tang DF; Ahmed AA; Liu Y; Wu ZL
    J Biotechnol; 2012 Oct; 161(3):235-41. PubMed ID: 22796094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis.
    Gursky LJ; Nikodinovic-Runic J; Feenstra KA; O'Connor KE
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):995-1004. PubMed ID: 19568744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Real-time solvent tolerance analysis of pseudomonas sp. strain VLB120{Delta}C catalytic biofilms.
    Halan B; Schmid A; Buehler K
    Appl Environ Microbiol; 2011 Mar; 77(5):1563-71. PubMed ID: 21193676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor.
    Gao P; Wu S; Praveen P; Loh KC; Li Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1857-1868. PubMed ID: 27830295
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C; Zhang X; Zhu Z; Xu M; Yang T; Osire T; Yang S; Rao Z
    Microb Cell Fact; 2019 Jan; 18(1):12. PubMed ID: 30678678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterization of an (R)-selective styrene monooxygenase from streptomyces sp. NRRL S-31.
    Cui C; Guo C; Lin H; Ding ZY; Liu Y; Wu ZL
    Enzyme Microb Technol; 2020 Jan; 132():109391. PubMed ID: 31731956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation.
    Hollmann F; Hofstetter K; Habicher T; Hauer B; Schmid A
    J Am Chem Soc; 2005 May; 127(18):6540-1. PubMed ID: 15869268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Process analysis of the conversion of styrene to biomass and medium chain length polyhydroxyalkanoate in a two-phase bioreactor.
    Nikodinovic-Runic J; Casey E; Duane GF; Mitic D; Hume AR; Kenny ST; O'Connor KE
    Biotechnol Bioeng; 2011 Oct; 108(10):2447-55. PubMed ID: 21520026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of (hydroxy)benzoate-derived polyketides by engineered Pseudomonas with in situ extraction.
    Schwanemann T; Urban EA; Eberlein C; Gätgens J; Rago D; Krink N; Nikel PI; Heipieper HJ; Wynands B; Wierckx N
    Bioresour Technol; 2023 Nov; 388():129741. PubMed ID: 37717703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis.
    Bühler B; Bollhalder I; Hauer B; Witholt B; Schmid A
    Biotechnol Bioeng; 2003 Mar; 81(6):683-94. PubMed ID: 12529882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system.
    Tischler D; Kermer R; Gröning JA; Kaschabek SR; van Berkel WJ; Schlömann M
    J Bacteriol; 2010 Oct; 192(19):5220-7. PubMed ID: 20675468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered
    Lenzen C; Wynands B; Otto M; Bolzenius J; Mennicken P; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():130. PubMed ID: 31245364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic engineering of
    Sivapuratharasan V; Lenzen C; Michel C; Muthukrishnan AB; Jayaraman G; Blank LM
    Metab Eng Commun; 2022 Dec; 15():e00202. PubMed ID: 36017490
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis.
    Gross R; Lang K; Bühler K; Schmid A
    Biotechnol Bioeng; 2010 Mar; 105(4):705-17. PubMed ID: 19845014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational Engineering of a Multi-Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in Pseudomonas taiwanensis.
    Schäfer L; Bühler K; Karande R; Bühler B
    Biotechnol J; 2020 Nov; 15(11):e2000091. PubMed ID: 32735401
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)-styrene oxide formation.
    Schmutzler K; Kupitz K; Schmid A; Buehler K
    Microb Biotechnol; 2017 Jul; 10(4):735-744. PubMed ID: 27411543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel auto-inducing expression systems for the development of whole-cell biocatalysts.
    Di Gennaro P; Ferrara S; Bestetti G; Sello G; Solera D; Galli E; Renzi F; Bertoni G
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):617-25. PubMed ID: 18465124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG; de Roo G; O'Connor KE
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth of Pseudomonas taiwanensis VLB120∆C biofilms in the presence of n-butanol.
    Halan B; Vassilev I; Lang K; Schmid A; Buehler K
    Microb Biotechnol; 2017 Jul; 10(4):745-755. PubMed ID: 27696696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantifying the Metabolome of Pseudomonas taiwanensis VLB120: Evaluation of Hot and Cold Combined Quenching/Extraction Approaches.
    Wordofa GG; Kristensen M; Schrübbers L; McCloskey D; Forster J; Schneider K
    Anal Chem; 2017 Sep; 89(17):8738-8747. PubMed ID: 28727413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.