These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30636497)

  • 21. Nano rules fall foul of data gap.
    Samuel Reich E
    Nature; 2011 Dec; 480(7376):160-1. PubMed ID: 22158217
    [No Abstract]   [Full Text] [Related]  

  • 22. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolomics techniques for nanotoxicity investigations.
    Lv M; Huang W; Chen Z; Jiang H; Chen J; Tian Y; Zhang Z; Xu F
    Bioanalysis; 2015; 7(12):1527-44. PubMed ID: 26168257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The multi-facets of sustainable nanotechnology - Lessons from a nanosafety symposium.
    George S; Ho SS; Wong ES; Tan TT; Verma NK; Aitken RJ; Riediker M; Cummings C; Yu L; Wang ZM; Zink D; Ng Z; Loo SC; Ng KW
    Nanotoxicology; 2015 May; 9(3):404-6. PubMed ID: 25976321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges.
    Johnston H; Pojana G; Zuin S; Jacobsen NR; Møller P; Loft S; Semmler-Behnke M; McGuiness C; Balharry D; Marcomini A; Wallin H; Kreyling W; Donaldson K; Tran L; Stone V
    Crit Rev Toxicol; 2013 Jan; 43(1):1-20. PubMed ID: 23126553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials.
    DeLoid GM; Wang Y; Kapronezai K; Lorente LR; Zhang R; Pyrgiotakis G; Konduru NV; Ericsson M; White JC; De La Torre-Roche R; Xiao H; McClements DJ; Demokritou P
    Part Fibre Toxicol; 2017 Oct; 14(1):40. PubMed ID: 29029643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.
    Yan L; Gu Z; Zhao Y
    Chem Asian J; 2013 Oct; 8(10):2342-53. PubMed ID: 23881693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What can nanosafety learn from drug development? The feasibility of "safety by design".
    Hjorth R; van Hove L; Wickson F
    Nanotoxicology; 2017 Apr; 11(3):305-312. PubMed ID: 28303735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanotoxicology: no small matter.
    Feliu N; Fadeel B
    Nanoscale; 2010 Dec; 2(12):2514-20. PubMed ID: 20877789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro assessments of nanomaterial toxicity.
    Jones CF; Grainger DW
    Adv Drug Deliv Rev; 2009 Jun; 61(6):438-56. PubMed ID: 19383522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials.
    Johnston HJ; Verdon R; Gillies S; Brown DM; Fernandes TF; Henry TB; Rossi AG; Tran L; Tucker C; Tyler CR; Stone V
    Crit Rev Toxicol; 2018 Mar; 48(3):252-271. PubMed ID: 29239234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanotoxicology and in vitro studies: the need of the hour.
    Arora S; Rajwade JM; Paknikar KM
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):151-65. PubMed ID: 22178382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manufactured nanomaterials: categorization and approaches to hazard assessment.
    Gebel T; Foth H; Damm G; Freyberger A; Kramer PJ; Lilienblum W; Röhl C; Schupp T; Weiss C; Wollin KM; Hengstler JG
    Arch Toxicol; 2014 Dec; 88(12):2191-211. PubMed ID: 25326817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do nanomedicines require novel safety assessments to ensure their safety for long-term human use?
    Hoet P; Legiest B; Geys J; Nemery B
    Drug Saf; 2009; 32(8):625-36. PubMed ID: 19591528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles.
    Tsuji JS; Maynard AD; Howard PC; James JT; Lam CW; Warheit DB; Santamaria AB
    Toxicol Sci; 2006 Jan; 89(1):42-50. PubMed ID: 16177233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular toxicity of nanomaterials.
    Chang XL; Yang ST; Xing G
    J Biomed Nanotechnol; 2014 Oct; 10(10):2828-51. PubMed ID: 25992420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation.
    Boverhof DR; David RM
    Anal Bioanal Chem; 2010 Feb; 396(3):953-61. PubMed ID: 19756533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity.
    Fako VE; Furgeson DY
    Adv Drug Deliv Rev; 2009 Jun; 61(6):478-86. PubMed ID: 19389433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.