BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30636609)

  • 1. Localization Analysis of Seven De-sumoylation Enzymes (SENPs) in Ocular Cell Lines.
    Liu Y; Liu F; Wang L; Fu JL; Luo ZW; Nie Q; Gong XD; Xiang JW; Xiao Y; Li DW
    Curr Mol Med; 2018; 18(8):523-532. PubMed ID: 30636609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Expression Patterns of Seven De-sumoylation Enzymes in Major Ocular Cell Lines.
    Liu Y; Zhang L; Tang X; Liu F; Fu JL; Gong XD; Wang L; Nie Q; Xiang JW; Xiao Y; Liu Y; Li DW
    Curr Mol Med; 2018; 18(9):584-593. PubMed ID: 30621560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Expression of Seven De-sumoylation Enzymes (SENPs) in Major Ocular Tissues of Mouse Eye.
    Xiang JW; Zhang L; Tang X; Xiao Y; Liu Y; Wang L; Liu F; Gong XD; Fu JL; Yang L; Luo Z; Li DW
    Curr Mol Med; 2018; 18(8):533-541. PubMed ID: 30636607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines Predict Their Functional Importance.
    Gong X; Nie Q; Xiao Y; Xiang JW; Wang L; Liu F; Fu JL; Liu Y; Yang L; Gan Y; Chen H; Luo Z; Qi R; Chen Z; Tang X; Li DW
    Curr Mol Med; 2018; 18(8):516-522. PubMed ID: 30636611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Differential Expression Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines.
    Nie Q; Xie J; Gong X; Luo Z; Wang L; Liu F; Xiang JW; Xiao Y; Fu JL; Liu Y; Chen Z; Yang L; Chen H; Gan Y; Li DW
    Curr Mol Med; 2018; 18(8):509-515. PubMed ID: 30636610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose Oxidase- and UVA-Induced Changes in the Expression Patterns of Seven De-sumoylation Enzymes (SENPs) Are Associated with Cataract Development.
    Xiang JW; Xiao Y; Gan Y; Chen H; Liu Y; Wang L; Nie Q; Liu F; Gong X; Fu JL; Qing WJ; Yang L; Xie J; Luo Z; Qi R; Chen Z; Li DW
    Curr Mol Med; 2019; 19(1):48-53. PubMed ID: 30854967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMO-specific Isopeptidases Tuning Cardiac SUMOylation in Health and Disease.
    Hotz PW; Müller S; Mendler L
    Front Mol Biosci; 2021; 8():786136. PubMed ID: 34869605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUMO proteases as potential targets for cancer therapy.
    Bialik P; Woźniak K
    Postepy Hig Med Dosw (Online); 2017 Dec; 71(0):997-1004. PubMed ID: 29225200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Non-Sumoylated and Sumoylated Isoforms of Pax-6, the Master Regulator for Eye and Brain Development in Ocular Cell Lines.
    Liu F; Wang L; Fu JL; Xiao Y; Gong X; Liu Y; Nie Q; Xiang JW; Yang L; Chen Z; Liu Y; Li DW
    Curr Mol Med; 2018; 18(8):566-573. PubMed ID: 30636604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Sumoylation Modulated Tumor Suppressor p53 Regulates Cell Cycle Checking Genes to Mediate Lens Differentiation.
    Tang X; Chen Z; Deng M; Wang L; Nie Q; Xiang JW; Xiao Y; Yang L; Liu Y; Li DW
    Curr Mol Med; 2018; 18(8):556-565. PubMed ID: 30636605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal Localization of SENP Proteins with Super Resolution Microscopy.
    Colnaghi L; Conz A; Russo L; Musi CA; Fioriti L; Borsello T; Salmona M
    Brain Sci; 2020 Oct; 10(11):. PubMed ID: 33113832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic localization of the SUMOylation-regulating protease SENP5 in the adult mouse brain.
    Akiyama H; Nakadate K; Sakakibara SI
    J Comp Neurol; 2018 Apr; 526(6):990-1005. PubMed ID: 29277914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of SENP3-interacting proteins in hepatocytes treated with diethylnitrosamine by BioID assay.
    Chen F; Yan H; Guo C; Zhu H; Yi J; Sun X; Yang J
    Acta Biochim Biophys Sin (Shanghai); 2021 Aug; 53(9):1237-1246. PubMed ID: 34312671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/3-targeted ubiquitination and degradation.
    Wang M; Sang J; Ren Y; Liu K; Liu X; Zhang J; Wang H; Wang J; Orian A; Yang J; Yi J
    Protein Cell; 2016 Jan; 7(1):63-77. PubMed ID: 26511642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic regulation of HIF1Α stability by SUMO2/3 and SENP3 in the human placenta.
    Bhattacharjee J; Alahari S; Sallais J; Tagliaferro A; Post M; Caniggia I
    Placenta; 2016 Apr; 40():8-17. PubMed ID: 27016777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7.
    Lima CD; Reverter D
    J Biol Chem; 2008 Nov; 283(46):32045-55. PubMed ID: 18799455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3.
    Gong L; Yeh ET
    J Biol Chem; 2006 Jun; 281(23):15869-77. PubMed ID: 16608850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation.
    Huang C; Han Y; Wang Y; Sun X; Yan S; Yeh ET; Chen Y; Cang H; Li H; Shi G; Cheng J; Tang X; Yi J
    EMBO J; 2009 Sep; 28(18):2748-62. PubMed ID: 19680224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUMO Losing Balance: SUMO Proteases Disrupt SUMO Homeostasis to Facilitate Cancer Development and Progression.
    Bawa-Khalfe T; Yeh ET
    Genes Cancer; 2010 Jul; 1(7):748-752. PubMed ID: 21152235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation.
    Yu X; Lao Y; Teng XL; Li S; Zhou Y; Wang F; Guo X; Deng S; Chang Y; Wu X; Liu Z; Chen L; Lu LM; Cheng J; Li B; Su B; Jiang J; Li HB; Huang C; Yi J; Zou Q
    Nat Commun; 2018 Aug; 9(1):3157. PubMed ID: 30089837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.