BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30636746)

  • 1. Evaluation of subjective perceived rating for grip strength depending on handedness for various target force levels.
    Kong YK; Lee JH; Shin JM; Shim HH; Kim JK; Cho MU; Park CW; Choi KH
    Work; 2019; 62(1):21-26. PubMed ID: 30636746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of grip force and subjective hand force exertion under handedness and postural conditions.
    Li KW; Yu R
    Appl Ergon; 2011 Nov; 42(6):929-33. PubMed ID: 21439549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superiority of the dominant and nondominant hands in static strength and controlled force exertion.
    Noguchi T; Demura S; Aoki H
    Percept Mot Skills; 2009 Oct; 109(2):339-46. PubMed ID: 20037986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibrating Borg scale ratings of hand force exertion.
    Spielholz P
    Appl Ergon; 2006 Sep; 37(5):615-8. PubMed ID: 16356466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of total grip strength and individual finger forces on opposing (A-type) handles among Koreans.
    Kong YK; Seo MT; Kang HS
    Ergonomics; 2014; 57(1):108-15. PubMed ID: 24192400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the controlled grip force exertion tasks associated with age, gender, handedness and target force level.
    Choi KH; Kim DM; Lee SY; Lee JH; Kong YK
    Int J Occup Saf Ergon; 2018 Dec; 24(4):507-515. PubMed ID: 28436312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the accuracy of the psychophysical approach to grip force measurement.
    King PM; Finet M
    J Hand Ther; 2004; 17(4):412-6. PubMed ID: 15538682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computer vision approach for classifying isometric grip force exertion levels.
    Asadi H; Zhou G; Lee JJ; Aggarwal V; Yu D
    Ergonomics; 2020 Aug; 63(8):1010-1026. PubMed ID: 32202214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force distribution of a cylindrical grip differs between dominant and nondominant hand in healthy subjects.
    Cai A; Pingel I; Lorz D; Beier JP; Horch RE; Arkudas A
    Arch Orthop Trauma Surg; 2018 Sep; 138(9):1323-1331. PubMed ID: 29992376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of aging on bimanual coordination control.
    Lin CH; Chou LW; Wei SH; Lieu FK; Chiang SL; Sung WH
    Exp Gerontol; 2014 May; 53():40-7. PubMed ID: 24548774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.
    Leib R; Rubin I; Nisky I
    J Neurophysiol; 2018 Aug; 120(2):781-794. PubMed ID: 29766763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of the CR-10 scale to allow self-regulation of isometric exercise intensity in pre-hypertensive and hypertensive participants.
    Morrin NM; Stone MR; Swaine IL; Henderson KJ
    Eur J Appl Physiol; 2018 Feb; 118(2):339-347. PubMed ID: 29214462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceived and actual grasp forces on cylindrical handles.
    Cochran DJ; Chen Y; Ding X
    Hum Factors; 2007 Apr; 49(2):292-9. PubMed ID: 17447669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force developmental phase and reliability in explosive and voluntary grip exertions.
    Demura S; Yamaji S; Nagasawa Y; Ikemoto Y; Shimada S
    Percept Mot Skills; 2001 Jun; 92(3 Pt 2):1009-21. PubMed ID: 11565909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Short-Term Hand Tractor Operation on Upper Limb Responses of Users.
    Revilla JAD; Punongbayan JKP; Pesigan CM; Landicho SCD
    J Agromedicine; 2024 Jul; 29(3):415-425. PubMed ID: 38595034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in subjective muscle fatigue sensation and blood lactate and their relationships with decreasing force during sustained handgripping using various target values and its recovery stage.
    Demura S; Yamaji S
    J Hum Ergol (Tokyo); 2009 Dec; 38(2):33-40. PubMed ID: 20437811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual finger contribution in submaximal voluntary contraction of gripping.
    Kong YK; Lee KS; Kim DM; Jung MC
    Ergonomics; 2011 Nov; 54(11):1072-80. PubMed ID: 22026950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time relationship between individual finger force and grip exertion on distal phalanges in linear force following tasks.
    Luo SJ; Shu G; Gong Y
    Appl Ergon; 2018 May; 69():25-31. PubMed ID: 29477326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences and properties of the decreasing force during sustained static grip at various target forces.
    Yamaji S; Demura S; Nakada M
    Percept Mot Skills; 2006 Aug; 103(1):29-39. PubMed ID: 17037641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of human grip strategy on force control in precision tasks.
    McDonnell MN; Ridding MC; Flavel SC; Miles TS
    Exp Brain Res; 2005 Mar; 161(3):368-73. PubMed ID: 15480594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.