These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 30636777)

  • 1. Energy crops affecting farmland birds in Central Europe: insights from a miscanthus-dominated landscape.
    Kaczmarek JM; Mizera T; Tryjanowski P
    Biologia (Bratisl); 2019; 74(1):35-44. PubMed ID: 30636777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergy and biodiversity: Intensified biomass extraction from hedges impairs habitat conditions for birds.
    Sauerbrei R; Aue B; Krippes C; Diehl E; Wolters V
    J Environ Manage; 2017 Feb; 187():311-319. PubMed ID: 27915181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dedicated biomass crops can enhance biodiversity in the arable landscape.
    Haughton AJ; Bohan DA; Clark SJ; Mallott MD; Mallott V; Sage R; Karp A
    Glob Change Biol Bioenergy; 2016 Nov; 8(6):1071-1081. PubMed ID: 27867421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serologic survey of birds for West Nile flavivirus in southern Moravia (Czech Republic).
    Hubálek Z; Halouzka J; Juricová Z; Sikutová S; Rudolf I; Honza M; Janková J; Chytil J; Marec F; Sitko J
    Vector Borne Zoonotic Dis; 2008 Oct; 8(5):659-66. PubMed ID: 18454599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the functional responses of farmland birds: an example for a declining seed-feeding bunting.
    Smart SL; Stillman RA; Norris KJ
    J Anim Ecol; 2008 Jul; 77(4):687-95. PubMed ID: 18577020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the regional impacts of increased energy maize cultivation on farmland birds.
    Brandt K; Glemnitz M
    Environ Monit Assess; 2014 Feb; 186(2):679-97. PubMed ID: 24323319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of Impacts during Early Establishment Highlights a Short-Term Management Window for Minimizing Invasions from Perennial Biomass Crops.
    West NM; Matlaga DP; Muthukrishnan R; Spyreas G; Jordan NR; Forester JD; Davis AS
    Front Plant Sci; 2017; 8():767. PubMed ID: 28555146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review.
    Nsanganwimana F; Pourrut B; Mench M; Douay F
    J Environ Manage; 2014 Oct; 143():123-34. PubMed ID: 24905642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling landscape constraints on farmland bird species range shifts under climate change.
    Reino L; Triviño M; Beja P; Araújo MB; Figueira R; Segurado P
    Sci Total Environ; 2018 Jun; 625():1596-1605. PubMed ID: 29996456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microhabitat selection by three common bird species of montane farmlands in Northern Greece.
    Tsiakiris R; Stara K; Pantis J; Sgardelis S
    Environ Manage; 2009 Nov; 44(5):874-87. PubMed ID: 19705197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergy crop induced changes in soil properties: A case study on Miscanthus fields in the Upper Rhine Region.
    Hu Y; Schäfer G; Duplay J; Kuhn NJ
    PLoS One; 2018; 13(7):e0200901. PubMed ID: 30048482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental costs and benefits of growing
    McCalmont JP; Hastings A; McNamara NP; Richter GM; Robson P; Donnison IS; Clifton-Brown J
    Glob Change Biol Bioenergy; 2017 Mar; 9(3):489-507. PubMed ID: 28331551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix.
    Hu B; Jarosch AM; Gauder M; Graeff-Hönninger S; Schnitzler JP; Grote R; Rennenberg H; Kreuzwieser J
    Environ Pollut; 2018 Jun; 237():205-217. PubMed ID: 29486454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus.
    Ings J; Mur LA; Robson PR; Bosch M
    Front Plant Sci; 2013; 4():468. PubMed ID: 24324474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible habitat use in a migratory songbird expanding across a human-modified landscape: is it adaptive?
    Gailly R; Cousseau L; Paquet JY; Titeux N; Dufrêne M
    Oecologia; 2020 Oct; 194(1-2):75-86. PubMed ID: 33025265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB.
    Milner S; Holland RA; Lovett A; Sunnenberg G; Hastings A; Smith P; Wang S; Taylor G
    Glob Change Biol Bioenergy; 2016 Mar; 8(2):317-333. PubMed ID: 27547244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DArT-based characterisation of genetic diversity in a Miscanthus collection from Poland.
    Tang J; Daroch M; Kilian A; Jeżowski S; Pogrzeba M; Mos M
    Planta; 2015 Oct; 242(4):985-96. PubMed ID: 26040407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focal species of birds in European crops for higher tier pesticide risk assessment.
    Dietzen C; Edwards PJ; Wolf C; Ludwigs JD; Luttik R
    Integr Environ Assess Manag; 2014 Apr; 10(2):247-59. PubMed ID: 24129982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the effect of agricultural land abandonment on bird communities in southern-eastern Europe.
    Zakkak S; Radovic A; Nikolov SC; Shumka S; Kakalis L; Kati V
    J Environ Manage; 2015 Dec; 164():171-9. PubMed ID: 26379254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.