BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 30636899)

  • 1. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects.
    Choi JR; Kim SM; Ryu RH; Kim SP; Sohn JW
    Exp Neurobiol; 2018 Dec; 27(6):453-471. PubMed ID: 30636899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain-Machine Interfaces: W-HERBS.
    Matsushita K; Hirata M; Suzuki T; Ando H; Yoshida T; Ota Y; Sato F; Morris S; Sugata H; Goto T; Yanagisawa T; Yoshimine T
    Front Neurosci; 2018; 12():511. PubMed ID: 30131666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multichannel neural recording with a 128 Mbps UWB wireless transmitter for implantable brain-machine interfaces.
    Ando H; Takizawa K; Yoshida T; Matsushita K; Hirata M; Suzuki T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4097-100. PubMed ID: 26737195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes.
    Fu X; Li G; Niu Y; Xu J; Wang P; Zhou Z; Ye Z; Liu X; Xu Z; Yang Z; Zhang Y; Lei T; Zhang B; Li Q; Cao A; Jiang T; Duan X
    Front Neurosci; 2021; 15():771980. PubMed ID: 35002602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NeuroMEMS: Neural Probe Microtechnologies.
    HajjHassan M; Chodavarapu V; Musallam S
    Sensors (Basel); 2008 Oct; 8(10):6704-6726. PubMed ID: 27873894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conducting polymer-based nanostructured materials for brain-machine interfaces.
    Ziai Y; Zargarian SS; Rinoldi C; Nakielski P; Sola A; Lanzi M; Truong YB; Pierini F
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1895. PubMed ID: 37141863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable neural probe systems for cortical neuroprostheses.
    Kipke DR
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():5344-7. PubMed ID: 17271549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Brain-machine interface--current status and future prospects].
    Ushiba J
    Brain Nerve; 2010 Feb; 62(2):101-11. PubMed ID: 20192030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Electrical and Optical Neural Interfaces.
    Ramezani Z; Seo KJ; Fang H
    J Micromech Microeng; 2021 Apr; 31(4):. PubMed ID: 34177136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices.
    Wan Y; Wang C; Zhang B; Liu Y; Yang H; Liu F; Xu J; Xu S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.
    Matsushita K; Hirata M; Suzuki T; Ando H; Ota Y; Sato F; Morris S; Yoshida T; Matsuki H; Yoshimine T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1867-70. PubMed ID: 24110075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Probes for Chronic Applications.
    Kook G; Lee SW; Lee HC; Cho IJ; Lee HJ
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices.
    Sung C; Jeon W; Nam KS; Kim Y; Butt H; Park S
    J Mater Chem B; 2020 Aug; 8(31):6624-6666. PubMed ID: 32567626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
    Irwin ZT; Thompson DE; Schroeder KE; Tat DM; Hassani A; Bullard AJ; Woo SL; Urbanchek MG; Sachs AJ; Cederna PS; Stacey WC; Patil PG; Chestek CA
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):521-31. PubMed ID: 26600160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording.
    Castagnola V; Descamps E; Lecestre A; Dahan L; Remaud J; Nowak LG; Bergaud C
    Biosens Bioelectron; 2015 May; 67():450-7. PubMed ID: 25256782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.