BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30637477)

  • 1. Adaptation in replicative senescence: a risky business.
    Coutelier H; Xu Z
    Curr Genet; 2019 Jun; 65(3):711-716. PubMed ID: 30637477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.
    Coutelier H; Xu Z; Morisse MC; Lhuillier-Akakpo M; Pelet S; Charvin G; Dubrana K; Teixeira MT
    Genes Dev; 2018 Dec; 32(23-24):1499-1513. PubMed ID: 30463903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible DNA damage checkpoint activation at the presenescent stage in telomerase-deficient cells of Saccharomyces cerevisiae.
    Miura A; Itakura E; Matsuura A
    Genes Cells; 2019 Aug; 24(8):546-558. PubMed ID: 31145520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae.
    Enomoto S; Glowczewski L; Berman J
    Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion.
    Grandin N; Bailly A; Charbonneau M
    Biol Cell; 2005 Oct; 97(10):799-814. PubMed ID: 15760303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrosome-Dependent Bypass of the DNA Damage Checkpoint by the Polo Kinase Cdc5.
    Ratsima H; Serrano D; Pascariu M; D'Amours D
    Cell Rep; 2016 Feb; 14(6):1422-1434. PubMed ID: 26832404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast.
    Galgoczy DJ; Toczyski DP
    Mol Cell Biol; 2001 Mar; 21(5):1710-8. PubMed ID: 11238908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hsp90 induces increased genomic instability toward DNA-damaging agents by tuning down RAD53 transcription.
    Khurana N; Laskar S; Bhattacharyya MK; Bhattacharyya S
    Mol Biol Cell; 2016 Aug; 27(15):2463-78. PubMed ID: 27307581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint.
    Toczyski DP; Galgoczy DJ; Hartwell LH
    Cell; 1997 Sep; 90(6):1097-106. PubMed ID: 9323137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATR/Mec1: coordinating fork stability and repair.
    Friedel AM; Pike BL; Gasser SM
    Curr Opin Cell Biol; 2009 Apr; 21(2):237-44. PubMed ID: 19230642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The yeast checkpoint kinase Dun1 downregulates DIN7 in the absence of DNA damage.
    Yoshitani A; Ling F; Yoshida M
    Biosci Biotechnol Biochem; 2008 Jun; 72(6):1630-4. PubMed ID: 18540090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae.
    Conde F; Ontoso D; Acosta I; Gallego-Sánchez A; Bueno A; San-Segundo PA
    DNA Repair (Amst); 2010 Oct; 9(10):1038-49. PubMed ID: 20674515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of rereplication control in Saccharomyces cerevisiae results in extensive DNA damage.
    Green BM; Li JJ
    Mol Biol Cell; 2005 Jan; 16(1):421-32. PubMed ID: 15537702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genomic screen revealing the importance of vesicular trafficking pathways in genome maintenance and protection against genotoxic stress in diploid Saccharomyces cerevisiae cells.
    Krol K; Brozda I; Skoneczny M; Bretner M; Skoneczna A
    PLoS One; 2015; 10(3):e0120702. PubMed ID: 25756177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
    Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH
    Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling pathways of replication stress in yeast.
    Pardo B; Crabbé L; Pasero P
    FEMS Yeast Res; 2017 Mar; 17(2):. PubMed ID: 27915243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for the spindle assembly checkpoint in the DNA damage response.
    Palou R; Palou G; Quintana DG
    Curr Genet; 2017 May; 63(2):275-280. PubMed ID: 27488803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide.
    Haghnazari E; Heyer WD
    DNA Repair (Amst); 2004 Jul; 3(7):769-76. PubMed ID: 15177185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The many types of heterogeneity in replicative senescence.
    Xu Z; Teixeira MT
    Yeast; 2019 Nov; 36(11):637-648. PubMed ID: 31306505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks.
    Herzberg K; Bashkirov VI; Rolfsmeier M; Haghnazari E; McDonald WH; Anderson S; Bashkirova EV; Yates JR; Heyer WD
    Mol Cell Biol; 2006 Nov; 26(22):8396-409. PubMed ID: 16966380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.