These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 30637708)
1. The Wrappers of the 1,2-Propanediol Utilization Bacterial Microcompartments. Bari NK; Kumar G; Sinha S Adv Exp Med Biol; 2018; 1112():333-344. PubMed ID: 30637708 [TBL] [Abstract][Full Text] [Related]
2. Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB. Kennedy NW; Mills CE; Abrahamson CH; Archer AG; Shirman S; Jewett MC; Mangan NM; Tullman-Ercek D J Bacteriol; 2022 Sep; 204(9):e0057621. PubMed ID: 35575582 [TBL] [Abstract][Full Text] [Related]
3. In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments. Sturms R; Streauslin NA; Cheng S; Bobik TA J Bacteriol; 2015 Jul; 197(14):2412-21. PubMed ID: 25962913 [TBL] [Abstract][Full Text] [Related]
4. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering. Slininger Lee MF; Jakobson CM; Tullman-Ercek D ACS Synth Biol; 2017 Oct; 6(10):1880-1891. PubMed ID: 28585808 [TBL] [Abstract][Full Text] [Related]
5. Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Chowdhury C; Chun S; Pang A; Sawaya MR; Sinha S; Yeates TO; Bobik TA Proc Natl Acad Sci U S A; 2015 Mar; 112(10):2990-5. PubMed ID: 25713376 [TBL] [Abstract][Full Text] [Related]
6. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif. Jakobson CM; Kim EY; Slininger MF; Chien A; Tullman-Ercek D J Biol Chem; 2015 Oct; 290(40):24519-33. PubMed ID: 26283792 [TBL] [Abstract][Full Text] [Related]
7. A systems-level model reveals that 1,2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. Jakobson CM; Tullman-Ercek D; Slininger MF; Mangan NM PLoS Comput Biol; 2017 May; 13(5):e1005525. PubMed ID: 28475631 [TBL] [Abstract][Full Text] [Related]
8. Molecular Dynamics Simulations of Selective Metabolite Transport across the Propanediol Bacterial Microcompartment Shell. Park J; Chun S; Bobik TA; Houk KN; Yeates TO J Phys Chem B; 2017 Aug; 121(34):8149-8154. PubMed ID: 28829618 [TBL] [Abstract][Full Text] [Related]
9. Kinetic Growth of Multicomponent Microcompartment Shells. Waltmann C; Kennedy NW; Mills CE; Roth EW; Ikonomova SP; Tullman-Ercek D; Olvera de la Cruz M ACS Nano; 2023 Aug; 17(16):15751-15762. PubMed ID: 37552700 [TBL] [Abstract][Full Text] [Related]
10. The shells of BMC-type microcompartment organelles in bacteria. Yeates TO; Jorda J; Bobik TA J Mol Microbiol Biotechnol; 2013; 23(4-5):290-9. PubMed ID: 23920492 [TBL] [Abstract][Full Text] [Related]
11. The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core. Lehman BP; Chowdhury C; Bobik TA J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138097 [TBL] [Abstract][Full Text] [Related]
12. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Chowdhury C; Bobik TA Microbiology (Reading); 2019 Dec; 165(12):1355-1364. PubMed ID: 31674899 [TBL] [Abstract][Full Text] [Related]
13. Bacterial microcompartments: their properties and paradoxes. Cheng S; Liu Y; Crowley CS; Yeates TO; Bobik TA Bioessays; 2008 Nov; 30(11-12):1084-95. PubMed ID: 18937343 [TBL] [Abstract][Full Text] [Related]
14. Tuning the Catalytic Activity of Subcellular Nanoreactors. Jakobson CM; Chen Y; Slininger MF; Valdivia E; Kim EY; Tullman-Ercek D J Mol Biol; 2016 Jul; 428(15):2989-96. PubMed ID: 27427532 [TBL] [Abstract][Full Text] [Related]
15. Effect of bio-engineering on size, shape, composition and rigidity of bacterial microcompartments. Mayer MJ; Juodeikis R; Brown IR; Frank S; Palmer DJ; Deery E; Beal DM; Xue WF; Warren MJ Sci Rep; 2016 Nov; 6():36899. PubMed ID: 27845382 [TBL] [Abstract][Full Text] [Related]
16. De novo design of signal sequences to localize cargo to the 1,2-propanediol utilization microcompartment. Jakobson CM; Slininger Lee MF; Tullman-Ercek D Protein Sci; 2017 May; 26(5):1086-1092. PubMed ID: 28241402 [TBL] [Abstract][Full Text] [Related]
17. Protein stoichiometry, structural plasticity and regulation of bacterial microcompartments. Liu LN; Yang M; Sun Y; Yang J Curr Opin Microbiol; 2021 Oct; 63():133-141. PubMed ID: 34340100 [TBL] [Abstract][Full Text] [Related]
18. Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell. Crowley CS; Cascio D; Sawaya MR; Kopstein JS; Bobik TA; Yeates TO J Biol Chem; 2010 Nov; 285(48):37838-46. PubMed ID: 20870711 [TBL] [Abstract][Full Text] [Related]
19. The effects of time, temperature, and pH on the stability of PDU bacterial microcompartments. Kim EY; Slininger MF; Tullman-Ercek D Protein Sci; 2014 Oct; 23(10):1434-41. PubMed ID: 25053115 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic Growth of Zeng Z; Li S; Boeren S; Smid EJ; Notebaart RA; Abee T mSphere; 2021 Aug; 6(4):e0043421. PubMed ID: 34287006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]