These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30637813)

  • 1. Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications.
    Sheng X; Xu T; Feng X
    Adv Mater; 2019 Mar; 31(11):e1805132. PubMed ID: 30637813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Charge Transport in 1D TiO
    Yu Z; Liu H; Zhu M; Li Y; Li W
    Small; 2021 Mar; 17(9):e1903378. PubMed ID: 31657147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-Processed Anatase Titania Nanowires: From Hyperbranched Design to Optoelectronic Applications.
    Wu WQ; Xu YF; Chen HY; Kuang DB; Su CY
    Acc Chem Res; 2019 Mar; 52(3):633-644. PubMed ID: 30668116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Development of Cocatalysts for Photoelectrochemical CO
    Chang X; Wang T; Yang P; Zhang G; Gong J
    Adv Mater; 2019 Aug; 31(31):e1804710. PubMed ID: 30537099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives.
    Liu D; Kuang Y
    Adv Mater; 2024 Apr; ():e2311692. PubMed ID: 38619834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting.
    Wang X; Ma S; Liu B; Wang S; Huang W
    Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Principles and Developments of Integrated Solar Flow Batteries.
    Li W; Jin S
    Acc Chem Res; 2020 Nov; 53(11):2611-2621. PubMed ID: 33085467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin film photoelectrodes for solar water splitting.
    He Y; Hamann T; Wang D
    Chem Soc Rev; 2019 Apr; 48(7):2182-2215. PubMed ID: 30667004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale.
    Wang W; Radmilovic A; Choi KS; Galli G
    Acc Chem Res; 2021 Oct; 54(20):3863-3872. PubMed ID: 34619961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-architecture and material designs for water splitting photoelectrodes.
    Chen HM; Chen CK; Liu RS; Zhang L; Zhang J; Wilkinson DP
    Chem Soc Rev; 2012 Sep; 41(17):5654-71. PubMed ID: 22763382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes.
    Al-Saeedi SI
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of Photocathodes: A Review on Principles, Design, and Strategies.
    Wang Q; Liu J; Li Q; Yang J
    ChemSusChem; 2023 May; 16(9):e202202186. PubMed ID: 36789473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties.
    Thorne JE; Li S; Du C; Qin G; Wang D
    J Phys Chem Lett; 2015 Oct; 6(20):4083-8. PubMed ID: 26722780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting.
    Wang S; Liu G; Wang L
    Chem Rev; 2019 Apr; 119(8):5192-5247. PubMed ID: 30875200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting.
    Zhou J; Cheng H; Cheng J; Wang L; Xu H
    Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.