These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30637813)

  • 21. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode.
    Kawasaki S; Takahashi R; Yamamoto T; Kobayashi M; Kumigashira H; Yoshinobu J; Komori F; Kudo A; Lippmaa M
    Nat Commun; 2016 Jun; 7():11818. PubMed ID: 27255209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.
    Chiu YH; Lai TH; Chen CY; Hsieh PY; Ozasa K; Niinomi M; Okada K; Chang TM; Matsushita N; Sone M; Hsu YJ
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22997-23008. PubMed ID: 29664283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Host/Guest Nanostructured Photoanodes Integrated with Targeted Enhancement Strategies for Photoelectrochemical Water Splitting.
    Wang Z; Zhu H; Tu W; Zhu X; Yao Y; Zhou Y; Zou Z
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103744. PubMed ID: 34738739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting.
    Zhou M; Bao J; Xu Y; Zhang J; Xie J; Guan M; Wang C; Wen L; Lei Y; Xie Y
    ACS Nano; 2014 Jul; 8(7):7088-98. PubMed ID: 24911285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transparent-conducting-oxide nanowire arrays for efficient photoelectrochemical energy conversion.
    Lee S; Park S; Han GS; Kim DH; Noh JH; Cho IS; Jung HS; Hong KS
    Nanoscale; 2014 Aug; 6(15):8649-55. PubMed ID: 24942487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress in Interface Engineering of Nanostructures for Photoelectrochemical Energy Harvesting Applications.
    Zi Y; Hu Y; Pu J; Wang M; Huang W
    Small; 2023 May; 19(19):e2208274. PubMed ID: 36776020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Supported Bi
    Wu M; Wang Y; Xu Y; Ming J; Zhou M; Xu R; Fu Q; Lei Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23647-23653. PubMed ID: 28640586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ordered Single-Crystalline Anatase TiO
    Wang Y; Liu X; Li Z; Cao Y; Li Y; Liu X; Jia S; Zhao Y
    Small; 2017 Jul; 13(28):. PubMed ID: 28558166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of the photochemical environment on photoanodes for photoelectrochemical water splitting.
    Huang X; Li Y; Gao X; Xue Q; Zhang R; Gao Y; Han Z; Shao M
    Dalton Trans; 2020 Sep; 49(35):12338-12344. PubMed ID: 32844844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional Integration of Catalysts with Si Nanowire Photocathodes for Efficient Utilization of Photogenerated Charge Carriers.
    Lim SY; Seo D; Jang MS; Chung TD
    ACS Omega; 2021 Aug; 6(34):22311-22316. PubMed ID: 34497920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrathin Silicon Oxide Film-Induced Enhancement of Charge Separation and Transport of Nanostructured Titanium(IV) Oxide Photoelectrode.
    Akita A; Kobayashi H; Tada H
    Chemphyschem; 2019 Aug; 20(16):2054-2059. PubMed ID: 31260153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational insights into charge transfer across functionalized semiconductor surfaces.
    Kearney K; Rockett A; Ertekin E
    Sci Technol Adv Mater; 2017; 18(1):681-692. PubMed ID: 31001363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient and stable Si nanowires array embedded into transparent polymer for visible light photoelectrochemical cell.
    Wang H; Wang JT; Ou XM; Li F; Zhang XH
    Nanotechnology; 2014 Jul; 25(26):265401. PubMed ID: 24920466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micro- and nanostructures of photoelectrodes for solar-driven water splitting.
    Zhang P; Gao L; Song X; Sun J
    Adv Mater; 2015 Jan; 27(3):562-8. PubMed ID: 25207919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accessing In Situ Photocorrosion under Realistic Light Conditions: Photoelectrochemical Scanning Flow Cell Coupled to Online ICP-MS.
    Jenewein KJ; Kormányos A; Knöppel J; Mayrhofer KJJ; Cherevko S
    ACS Meas Sci Au; 2021 Oct; 1(2):74-81. PubMed ID: 36785747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoelectrochemical properties of nanomultiple CaFe2O4/ZnFe2O4 pn junction photoelectrodes.
    Cao J; Xing J; Zhang Y; Tong H; Bi Y; Kako T; Takeguchi M; Ye J
    Langmuir; 2013 Mar; 29(9):3116-24. PubMed ID: 23391307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous Photoelectrocatalytic Water Oxidation and Oxygen Reduction for Solar Electricity Production in Alkaline Solution.
    Zhang B; He L; Yao T; Fan W; Zhang X; Wen S; Shi J; Li C
    ChemSusChem; 2019 Mar; 12(5):1026-1032. PubMed ID: 30747497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting.
    Oh S; Song H; Oh J
    Nano Lett; 2017 Sep; 17(9):5416-5422. PubMed ID: 28800240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic photoelectrochemical cell for solar-driven CO
    Kalamaras E; Belekoukia M; Tan JZY; Xuan J; Maroto-Valer MM; Andresen JM
    Faraday Discuss; 2019 Jul; 215(0):329-344. PubMed ID: 30942213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.