These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30637957)
21. Improving efficiency by hybrid TiO(2) nanorods with 1,10-phenanthroline as a cathode buffer layer for inverted organic solar cells. Sun C; Wu Y; Zhang W; Jiang N; Jiu T; Fang J ACS Appl Mater Interfaces; 2014 Jan; 6(2):739-44. PubMed ID: 24386910 [TBL] [Abstract][Full Text] [Related]
22. Incorporating an Inert Polymer into the Interlayer Passivates Surface Defects in Methylammonium Lead Halide Perovskite Solar Cells. Bi S; Zhang X; Qin L; Wang R; Zhou J; Leng X; Qiu X; Zhang Y; Zhou H; Tang Z Chemistry; 2017 Oct; 23(58):14650-14657. PubMed ID: 28833717 [TBL] [Abstract][Full Text] [Related]
23. Solution-Processed Air-Stable Copper Bismuth Iodide for Photovoltaics. Hu Z; Wang Z; Kapil G; Ma T; Iikubo S; Minemoto T; Yoshino K; Toyoda T; Shen Q; Hayase S ChemSusChem; 2018 Sep; 11(17):2930-2935. PubMed ID: 29920992 [TBL] [Abstract][Full Text] [Related]
24. Benzo[1,2- Zheng Z; He E; Lu Y; Yin Y; Pang X; Guo F; Gao S; Zhao L; Zhang Y ACS Appl Mater Interfaces; 2021 Apr; 13(13):15448-15458. PubMed ID: 33769030 [TBL] [Abstract][Full Text] [Related]
25. Squaraine based solution processed inverted bulk heterojunction solar cells processed in air. Varma PC; Namboothiry MA Phys Chem Chem Phys; 2016 Feb; 18(5):3438-43. PubMed ID: 26426261 [TBL] [Abstract][Full Text] [Related]
26. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Li M; Ni W; Kan B; Wan X; Zhang L; Zhang Q; Long G; Zuo Y; Chen Y Phys Chem Chem Phys; 2013 Nov; 15(43):18973-8. PubMed ID: 24097209 [TBL] [Abstract][Full Text] [Related]
27. High-Performance Inverted Organic Photovoltaics Without Hole-Selective Contact. Savva A; Burgués-Ceballos I; Papazoglou G; Choulis SA ACS Appl Mater Interfaces; 2015 Nov; 7(44):24608-15. PubMed ID: 26468993 [TBL] [Abstract][Full Text] [Related]
28. Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells. Wolff CM; Canil L; Rehermann C; Ngoc Linh N; Zu F; Ralaiarisoa M; Caprioglio P; Fiedler L; Stolterfoht M; Kogikoski S; Bald I; Koch N; Unger EL; Dittrich T; Abate A; Neher D ACS Nano; 2020 Feb; 14(2):1445-1456. PubMed ID: 31909973 [TBL] [Abstract][Full Text] [Related]
30. [6,6]-Phenyl-C Fang R; Wu S; Chen W; Liu Z; Zhang S; Chen R; Yue Y; Deng L; Cheng YB; Han L; Chen W ACS Nano; 2018 Mar; 12(3):2403-2414. PubMed ID: 29481056 [TBL] [Abstract][Full Text] [Related]
31. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
32. Locking-In Optimal Nanoscale Structure Induced by Naphthalenediimide-Based Polymeric Additive Enables Efficient and Stable Inverted Polymer Solar Cells. Park KH; An Y; Jung S; Park H; Yang C ACS Nano; 2017 Jul; 11(7):7409-7415. PubMed ID: 28640993 [TBL] [Abstract][Full Text] [Related]
33. Low-Temperature Solution-Processed SnO Tran VH; Ambade RB; Ambade SB; Lee SH; Lee IH ACS Appl Mater Interfaces; 2017 Jan; 9(2):1645-1653. PubMed ID: 27982562 [TBL] [Abstract][Full Text] [Related]
34. UV-Cross-linkable Donor-Acceptor Polymers Bearing a Photostable Conjugated Backbone for Efficient and Stable Organic Photovoltaics. Wu SC; Strover LT; Yao X; Chen XQ; Xiao WJ; Liu LN; Wang J; Visoly-Fisher I; Katz EA; Li WS ACS Appl Mater Interfaces; 2018 Oct; 10(41):35430-35440. PubMed ID: 30247021 [TBL] [Abstract][Full Text] [Related]
35. Toward Long-Term Stable and Efficient Large-Area Organic Solar Cells. Tsai PT; Lin KC; Wu CY; Liao CH; Lin MC; Wong YQ; Meng HF; Chang CY; Wang CL; Huang YF; Horng SF; Zan HW; Chao YC ChemSusChem; 2017 Jul; 10(13):2778-2787. PubMed ID: 28516516 [TBL] [Abstract][Full Text] [Related]
36. Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature. Ben Dkhil S; Pfannmöller M; Schröder RR; Alkarsifi R; Gaceur M; Köntges W; Heidari H; Bals S; Margeat O; Ackermann J; Videlot-Ackermann C ACS Appl Mater Interfaces; 2018 Jan; 10(4):3874-3884. PubMed ID: 29327577 [TBL] [Abstract][Full Text] [Related]
37. Efficient and Stable Air-Processed Organic Solar Cells Enabled by an Antioxidant Additive. Luo S; Dou Y; Shi X; Liu Y; Liu T; Hu X; Li T; Peng X; Hu H; Yan H; Chen S Adv Mater; 2024 Aug; 36(35):e2407609. PubMed ID: 38875710 [TBL] [Abstract][Full Text] [Related]
38. Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells. Luo P; Xia W; Zhou S; Sun L; Cheng J; Xu C; Lu Y J Phys Chem Lett; 2016 Sep; 7(18):3603-8. PubMed ID: 27569604 [TBL] [Abstract][Full Text] [Related]
39. Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells. Li D; Liu Q; Zhen J; Fang Z; Chen X; Yang S ACS Appl Mater Interfaces; 2017 Jan; 9(3):2720-2729. PubMed ID: 28045489 [TBL] [Abstract][Full Text] [Related]
40. [6,6]-phenyl-C₆₁-butyric acid 2-((2-(dimethylamino)ethyl)(methyl)amino)-ethyl ester as an acceptor and cathode interfacial material in polymer solar cells. Lv M; Lei M; Zhu J; Hirai T; Chen X ACS Appl Mater Interfaces; 2014 Apr; 6(8):5844-51. PubMed ID: 24660905 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]