BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30638380)

  • 41. Curcumin lessens unpredictable chronic mild stress-induced depression and memory deficits by modulating oxidative stress and cholinergic activity.
    Naqvi F; Saleem S; Naqvi F; Batool Z; Sadir S; Tabassum S; Ahmed S; Liaquat L; Haider S
    Pak J Pharm Sci; 2019 Jul; 32(4(Supplementary)):1893-1900. PubMed ID: 31680089
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thioflavin T Interaction with Acetylcholinesterase: New Evidence of 1:1 Binding Stoichiometry Obtained with Samples Prepared by Equilibrium Microdialysis.
    Sulatskaya AI; Rychkov GN; Sulatsky MI; Rodina NP; Kuznetsova IM; Turoverov KK
    ACS Chem Neurosci; 2018 Jul; 9(7):1793-1801. PubMed ID: 29652131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Depression of acetylcholinesterase synthesis following transient cerebral ischemia in rat: pharmacohistochemical and biochemical investigation.
    Malatová Z; Gottlieb M; Marsala J
    Gen Physiol Biophys; 1999 Mar; 18(1):57-71. PubMed ID: 10378121
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase.
    Eckenstein F; Sofroniew MV
    J Neurosci; 1983 Nov; 3(11):2286-91. PubMed ID: 6355402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrasensitive and ratiometric two-photon fluorescence imaging of Golgi polarity during drug-induced acute kidney injury.
    Wang H; Dong M; Wang H; Huang F; Li P; Zhang W; Zhang W; Tang B
    Chem Commun (Camb); 2021 Jun; 57(47):5838-5841. PubMed ID: 34008637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a Highly Selective Two-Photon Probe for Methylglyoxal and its Applications in Living Cells, Tissues, and Zebrafish.
    Gao S; Tang Y; Lin W
    J Fluoresc; 2019 Jan; 29(1):155-163. PubMed ID: 30417249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuroprotective Effects of Acetylcholinesterase Inhibitory Peptides from Anchovy (Coilia mystus) against Glutamate-Induced Toxicity in PC12 Cells.
    Zhao T; Su G; Wang S; Zhang Q; Zhang J; Zheng L; Sun B; Zhao M
    J Agric Food Chem; 2017 Dec; 65(51):11192-11201. PubMed ID: 29190426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ratiometric Two-Photon Fluorescent Probe for in Vivo Hydrogen Polysulfides Detection and Imaging during Lipopolysaccharide-Induced Acute Organs Injury.
    Zhang J; Zhu XY; Hu XX; Liu HW; Li J; Feng LL; Yin X; Zhang XB; Tan W
    Anal Chem; 2016 Dec; 88(23):11892-11899. PubMed ID: 27934104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Binding of 2-[18F]fluoro-CP-118,954 to mouse acetylcholinesterase: microPET and ex vivo Cerenkov luminescence imaging studies.
    Kim DH; Choe YS; Choi JY; Lee KH; Kim BT
    Nucl Med Biol; 2011 May; 38(4):541-7. PubMed ID: 21531291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differentiation intensifies the susceptibility of pheochromocytoma cells to antisense oligodeoxynucleotide-dependent suppression of acetylcholinesterase activity.
    Grifman M; Soreq H
    Antisense Nucleic Acid Drug Dev; 1997 Aug; 7(4):351-9. PubMed ID: 9303187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visualization of Endoplasmic Reticulum Aminopeptidase 1 under Different Redox Conditions with a Two-Photon Fluorescent Probe.
    Xu S; Liu HW; Hu XX; Huan SY; Zhang J; Liu YC; Yuan L; Qu FL; Zhang XB; Tan W
    Anal Chem; 2017 Jul; 89(14):7641-7648. PubMed ID: 28613839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Delivery of human acetylcholinesterase by adeno-associated virus to the acetylcholinesterase knockout mouse.
    Hrabovska A; Duysen EG; Sanders JD; Murrin LC; Lockridge O
    Chem Biol Interact; 2005 Dec; 157-158():71-8. PubMed ID: 16243306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption.
    Moyano P; de Frias M; Lobo M; Anadon MJ; Sola E; Pelayo A; Díaz MJ; Frejo MT; Del Pino J
    Toxicology; 2018 Feb; 394():54-62. PubMed ID: 29253600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immobilization stress-induced changes in brain acetylcholinesterase activity and cognitive function in mice.
    Das A; Kapoor K; Sayeepriyadarshini AT; Dikshit M; Palit G; Nath C
    Pharmacol Res; 2000 Sep; 42(3):213-7. PubMed ID: 10945925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selective Visualization of the Endogenous Peroxynitrite in an Inflamed Mouse Model by a Mitochondria-Targetable Two-Photon Ratiometric Fluorescent Probe.
    Cheng D; Pan Y; Wang L; Zeng Z; Yuan L; Zhang X; Chang YT
    J Am Chem Soc; 2017 Jan; 139(1):285-292. PubMed ID: 27996249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of imipramine and lithium on "learned helplessness" and acetylcholinesterase in rat brain.
    Geoffroy M; Tvede K; Christensen AV; Schou JS
    Pharmacol Biochem Behav; 1991 Jan; 38(1):93-7. PubMed ID: 2017459
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of acetylcholinesterase in an animal model of mania induced by D-amphetamine.
    Varela RB; Valvassori SS; Lopes-Borges J; Fraga DB; Resende WR; Arent CO; Zugno AI; Quevedo J
    Psychiatry Res; 2013 Sep; 209(2):229-34. PubMed ID: 23245536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle.
    Zhang Y; Hei T; Cai Y; Gao Q; Zhang Q
    Anal Chem; 2012 Mar; 84(6):2830-6. PubMed ID: 22339669
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity.
    Chang J; Li H; Hou T; Li F
    Biosens Bioelectron; 2016 Dec; 86():971-977. PubMed ID: 27498323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphinate-based mitochondria-targeted fluorescent probe for imaging and detection of endogenous superoxide in live cells and in vivo.
    Huang S; Zhang X; Liu Y; Gui J; Wang R; Han L; Jia H; Du L
    Talanta; 2019 May; 197():239-248. PubMed ID: 30771930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.