These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30638497)

  • 21. Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms.
    Wang K; Mou X; Cao H; Struewing I; Allen J; Lu J
    Environ Pollut; 2021 Nov; 288():117682. PubMed ID: 34271516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivity.
    Davis TW; Watson SB; Rozmarynowycz MJ; Ciborowski JJ; McKay RM; Bullerjahn GS
    PLoS One; 2014; 9(9):e106093. PubMed ID: 25207941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental factors affecting chytrid (Chytridiomycota) infection rates on
    McKindles KM; Manes MA; McKay RM; Davis TW; Bullerjahn GS
    J Plankton Res; 2021; 43(5):658-672. PubMed ID: 34588922
    [No Abstract]   [Full Text] [Related]  

  • 24. Urea dynamics during Lake Taihu cyanobacterial blooms in China.
    Lu K; Liu Z; Dai R; Gardner WS
    Harmful Algae; 2019 Apr; 84():233-243. PubMed ID: 31128808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ammonium, microcystins, and hypoxia of blooms in eutrophic water cause oxidative stress and C-N imbalance in submersed and floating-leaved aquatic plants in Lake Taihu, China.
    Zhang M; Wang Z; Xu J; Liu Y; Ni L; Cao T; Xie P
    Chemosphere; 2011 Jan; 82(3):329-39. PubMed ID: 21075418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities.
    Bukowska A; Kaliński T; Koper M; Kostrzewska-Szlakowska I; Kwiatowski J; Mazur-Marzec H; Jasser I
    Sci Rep; 2017 Aug; 7(1):8342. PubMed ID: 28827675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of Microcystis buoyancy in western Lake Erie and Saginaw Bay of Lake Huron.
    Den Uyl PA; Harrison SB; Godwin CM; Rowe MD; Strickler JR; Vanderploeg HA
    Harmful Algae; 2021 Aug; 108():102102. PubMed ID: 34588123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.
    Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS
    Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elucidating controls on cyanobacteria bloom timing and intensity via Bayesian mechanistic modeling.
    Del Giudice D; Fang S; Scavia D; Davis TW; Evans MA; Obenour DR
    Sci Total Environ; 2021 Feb; 755(Pt 1):142487. PubMed ID: 33035987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions.
    Zhang Z; Fan X; Peijnenburg WJGM; Zhang M; Sun L; Zhai Y; Yu Q; Wu J; Lu T; Qian H
    J Environ Sci (China); 2021 Jan; 99():1-9. PubMed ID: 33183685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?
    Paerl HW; Xu H; Hall NS; Zhu G; Qin B; Wu Y; Rossignol KL; Dong L; McCarthy MJ; Joyner AR
    PLoS One; 2014; 9(11):e113123. PubMed ID: 25405474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake.
    Li H; Alsanea A; Barber M; Goel R
    Sci Total Environ; 2019 Apr; 661():465-480. PubMed ID: 30677691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix-dominated freshwater lakes.
    Janse I; Kardinaal WE; Agterveld MK; Meima M; Visser PM; Zwart G
    Environ Microbiol; 2005 Oct; 7(10):1514-24. PubMed ID: 16156725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario.
    Urrutia-Cordero P; Ekvall MK; Hansson LA
    PLoS One; 2016; 11(4):e0153032. PubMed ID: 27043823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early and late cyanobacterial bloomers in a shallow, eutrophic lake.
    Painter KJ; Venkiteswaran JJ; Simon DF; Vo Duy S; Sauvé S; Baulch HM
    Environ Sci Process Impacts; 2022 Aug; 24(8):1212-1227. PubMed ID: 35833582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatio-temporal connectivity of the aquatic microbiome associated with cyanobacterial blooms along a Great Lake riverine-lacustrine continuum.
    Crevecoeur S; Edge TA; Watson LC; Watson SB; Greer CW; Ciborowski JJH; Diep N; Dove A; Drouillard KG; Frenken T; McKay RM; Zastepa A; Comte J
    Front Microbiol; 2023; 14():1073753. PubMed ID: 36846788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioavailable Nutrients (N and P) and Precipitation Patterns Drive Cyanobacterial Blooms in Missisquoi Bay, Lake Champlain.
    Celikkol S; Fortin N; Tromas N; Andriananjamanantsoa H; Greer CW
    Microorganisms; 2021 Oct; 9(10):. PubMed ID: 34683418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms.
    Gobler CJ; Burkholder JM; Davis TW; Harke MJ; Johengen T; Stow CA; Van de Waal DB
    Harmful Algae; 2016 Apr; 54():87-97. PubMed ID: 28073483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.