These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 30638510)
1. Optimization and modelling of enzymatic polymerization of ε-caprolactone to polycaprolactone using Candida Antartica Lipase B with response surface methodology and artificial neural network. Pakalapati H; Tariq MA; Arumugasamy SK Enzyme Microb Technol; 2019 Mar; 122():7-18. PubMed ID: 30638510 [TBL] [Abstract][Full Text] [Related]
2. Parametric optimization of polycaprolactone synthesis catalysed by Candida antarctica lipase B using response surface methodology. Pakalapati H; Arumugasamy SK; Jewaratnam J; Wong YJ; Khalid M Biopolymers; 2018 Dec; 109(12):e23240. PubMed ID: 30489632 [TBL] [Abstract][Full Text] [Related]
3. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in optimization of the immobilization conditions for lipase from Candida rugosa on Amberjet(®) 4200-Cl. Fatiha B; Sameh B; Youcef S; Zeineddine D; Nacer R Prep Biochem Biotechnol; 2013; 43(1):33-47. PubMed ID: 23215653 [TBL] [Abstract][Full Text] [Related]
4. Toward one-pot lipase-catalyzed synthesis of poly(ε-caprolactone) particles in aqueous dispersion. Inprakhon P; Panlawan P; Pongtharankul T; Marie E; Wiemann LO; Durand A; Sieber V Colloids Surf B Biointerfaces; 2014 Jan; 113():254-60. PubMed ID: 24103504 [TBL] [Abstract][Full Text] [Related]
5. Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone. Todea A; Aparaschivei D; Badea V; Boeriu CG; Peter F Biotechnol J; 2018 Jun; 13(6):e1700629. PubMed ID: 29542861 [TBL] [Abstract][Full Text] [Related]
7. Recent Developments and Optimization of Lipase-Catalyzed Lactone Formation and Ring-Opening Polymerization. Champagne E; Strandman S; Zhu XX Macromol Rapid Commun; 2016 Dec; 37(24):1986-2004. PubMed ID: 27805747 [TBL] [Abstract][Full Text] [Related]
8. Lipase-mediated direct in situ ring-opening polymerization of ε-caprolactone formed by a chemo-enzymatic method. Zhang Y; Lu P; Sun Q; Li T; Zhao L; Gao X; Wang F; Liu J J Biotechnol; 2018 Sep; 281():74-80. PubMed ID: 29908204 [TBL] [Abstract][Full Text] [Related]
9. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects. Namekawa S; Suda S; Uyama H; Kobayashi S Int J Biol Macromol; 1999; 25(1-3):145-51. PubMed ID: 10416661 [TBL] [Abstract][Full Text] [Related]
10. Yarrowia lipolytica Extracellular Lipase Lip2 as Biocatalyst for the Ring-Opening Polymerization of ε-Caprolactone. Barrera-Rivera KA; Martínez-Richa A Molecules; 2017 Nov; 22(11):. PubMed ID: 29112152 [No Abstract] [Full Text] [Related]
11. Optimization of chemoenzymatic Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone using response surface methodology. Zhang Y; Jiang W; Lv K; Sun Y; Gao X; Zhao Q; Ren W; Wang F; Liu J Biotechnol Prog; 2020 Jan; 36(1):e2901. PubMed ID: 31465150 [TBL] [Abstract][Full Text] [Related]
12. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Idris A; Bukhari A Biotechnol Adv; 2012; 30(3):550-63. PubMed ID: 22041165 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide. Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093 [TBL] [Abstract][Full Text] [Related]
14. Biocatalytic synthesis of δ-gluconolactone and ε-caprolactone copolymers. Todea A; Badea V; Nagy L; Kéki S; Boeriu CG; Péter F Acta Biochim Pol; 2014; 61(2):205-10. PubMed ID: 24904930 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization. Dai S; Li Z Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of poly(ε-caprolactone) by an immobilized lipase coated with ionic liquids in a solvent-free condition. Wu C; Zhang Z; Chen C; He F; Zhuo R Biotechnol Lett; 2013 Oct; 35(10):1623-30. PubMed ID: 23708876 [TBL] [Abstract][Full Text] [Related]
17. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone. Sivalingam G; Madras G Biomacromolecules; 2004; 5(2):603-9. PubMed ID: 15003027 [TBL] [Abstract][Full Text] [Related]
18. Ring-opening bulk polymerization of epsilon-caprolactone and trimethylene carbonate catalyzed by lipase Novozym 435. Deng F; Gross RA Int J Biol Macromol; 1999; 25(1-3):153-9. PubMed ID: 10416662 [TBL] [Abstract][Full Text] [Related]
19. No Strain, No Gain? Enzymatic Ring-Opening Polymerization of Strainless Aliphatic Macrolactones. Witt T; Häußler M; Mecking S Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28044380 [TBL] [Abstract][Full Text] [Related]
20. Immobilized Candida antarctica lipase B catalyzed synthesis of biodegradable polymers for biomedical applications. Lu Y; Lv Q; Liu B; Liu J Biomater Sci; 2019 Nov; 7(12):4963-4983. PubMed ID: 31532401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]