These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 30638696)
1. Transverse Muscle Ultrasound Analysis (TRAMA): Robust and Accurate Segmentation of Muscle Cross-Sectional Area. Salvi M; Caresio C; Meiburger KM; De Santi B; Molinari F; Minetto MA Ultrasound Med Biol; 2019 Mar; 45(3):672-683. PubMed ID: 30638696 [TBL] [Abstract][Full Text] [Related]
2. Fully Automated Muscle Ultrasound Analysis (MUSA): Robust and Accurate Muscle Thickness Measurement. Caresio C; Salvi M; Molinari F; Meiburger KM; Minetto MA Ultrasound Med Biol; 2017 Jan; 43(1):195-205. PubMed ID: 27720522 [TBL] [Abstract][Full Text] [Related]
3. Deep learning segmentation of transverse musculoskeletal ultrasound images for neuromuscular disease assessment. Marzola F; van Alfen N; Doorduin J; Meiburger KM Comput Biol Med; 2021 Aug; 135():104623. PubMed ID: 34252683 [TBL] [Abstract][Full Text] [Related]
4. Automatic Tracking of Muscle Cross-Sectional Area Using Convolutional Neural Networks with Ultrasound. Chen X; Xie C; Chen Z; Li Q J Ultrasound Med; 2019 Nov; 38(11):2901-2908. PubMed ID: 30937932 [TBL] [Abstract][Full Text] [Related]
5. Validity and reliability of masseter muscles segmentation from the transverse sections of Cone-Beam CT scans compared with MRI scans. Pan Y; Wang Y; Li G; Chen S; Xu T Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):751-759. PubMed ID: 34625872 [TBL] [Abstract][Full Text] [Related]
6. Automatic Fascicle Length Estimation on Muscle Ultrasound Images With an Orientation-Sensitive Segmentation. Zhou GQ; Zheng YP IEEE Trans Biomed Eng; 2015 Dec; 62(12):2828-36. PubMed ID: 26087480 [TBL] [Abstract][Full Text] [Related]
7. Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images. Molinari F; Caresio C; Acharya UR; Mookiah MR; Minetto MA Ultrasound Med Biol; 2015 Sep; 41(9):2520-32. PubMed ID: 26026375 [TBL] [Abstract][Full Text] [Related]
8. DeepACSA: Automatic Segmentation of Cross-Sectional Area in Ultrasound Images of Lower Limb Muscles Using Deep Learning. Ritsche P; Wirth P; Cronin NJ; Sarto F; Narici MV; Faude O; Franchi MV Med Sci Sports Exerc; 2022 Dec; 54(12):2188-2195. PubMed ID: 35941517 [TBL] [Abstract][Full Text] [Related]
9. Automatic segmentation of ultrasound images of gastrocnemius medialis with different echogenicity levels using convolutional neural networks. Marzola F; Alfen NV; Salvi M; Santi B; Doorduin J; Meiburger KM Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2113-2116. PubMed ID: 33018423 [TBL] [Abstract][Full Text] [Related]
10. Muscle Type and Gender Recognition Utilising High-Level Textural Representation in Musculoskeletal Ultrasonography. Katakis S; Barotsis N; Kastaniotis D; Theoharatos C; Tsiganos P; Economou G; Panagiotopoulos E; Fotopoulos S; Panayiotakis G Ultrasound Med Biol; 2019 Jul; 45(7):1562-1573. PubMed ID: 30987911 [TBL] [Abstract][Full Text] [Related]
11. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas. Kemnitz J; Eckstein F; Culvenor AG; Ruhdorfer A; Dannhauer T; Ring-Dimitriou S; Sänger AM; Wirth W MAGMA; 2017 Oct; 30(5):489-503. PubMed ID: 28455629 [TBL] [Abstract][Full Text] [Related]
12. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980 [TBL] [Abstract][Full Text] [Related]
13. An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image. Qian C; Yang X Comput Methods Programs Biomed; 2018 Jan; 153():19-32. PubMed ID: 29157451 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images. Yilmaz P; Wallecan K; Kristanto W; Aben JP; Moelker A J Digit Imaging; 2018 Oct; 31(5):670-679. PubMed ID: 29524154 [TBL] [Abstract][Full Text] [Related]
15. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Le Troter A; Fouré A; Guye M; Confort-Gouny S; Mattei JP; Gondin J; Salort-Campana E; Bendahan D MAGMA; 2016 Apr; 29(2):245-57. PubMed ID: 26983429 [TBL] [Abstract][Full Text] [Related]
16. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images. Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728 [TBL] [Abstract][Full Text] [Related]
17. ACSAuto-semi-automatic assessment of human vastus lateralis and rectus femoris cross-sectional area in ultrasound images. Ritsche P; Wirth P; Franchi MV; Faude O Sci Rep; 2021 Jun; 11(1):13042. PubMed ID: 34158572 [TBL] [Abstract][Full Text] [Related]
18. Carotid plaque segmentation from three-dimensional ultrasound images by direct three-dimensional sparse field level-set optimization. Cheng J; Chen Y; Yu Y; Chiu B Comput Biol Med; 2018 Mar; 94():27-40. PubMed ID: 29407996 [TBL] [Abstract][Full Text] [Related]
19. Reliability and accuracy of ultrasound image analyses completed manually Wohlgemuth KJ; Blue MNM; Mota JA PeerJ; 2022; 10():e13609. PubMed ID: 35729910 [TBL] [Abstract][Full Text] [Related]
20. Curvelet based automatic segmentation of supraspinatus tendon from ultrasound image: a focused assistive diagnostic method. Gupta R; Elamvazuthi I; Dass SC; Faye I; Vasant P; George J; Izza F Biomed Eng Online; 2014 Dec; 13():157. PubMed ID: 25471386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]