BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30638813)

  • 1. A Simple and Flexible Computational Framework for Inferring Sources of Heterogeneity from Single-Cell Dynamics.
    Dharmarajan L; Kaltenbach HM; Rudolf F; Stelling J
    Cell Syst; 2019 Jan; 8(1):15-26.e11. PubMed ID: 30638813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable and flexible inference framework for stochastic dynamic single-cell models.
    Persson S; Welkenhuysen N; Shashkova S; Wiqvist S; Reith P; Schmidt GW; Picchini U; Cvijovic M
    PLoS Comput Biol; 2022 May; 18(5):e1010082. PubMed ID: 35588132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network Inference from Single-Cell Transcriptomic Data.
    Todorov H; Cannoodt R; Saelens W; Saeys Y
    Methods Mol Biol; 2019; 1883():235-249. PubMed ID: 30547403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global parameter identification of stochastic reaction networks from single trajectories.
    Müller CL; Ramaswamy R; Sbalzarini IF
    Adv Exp Med Biol; 2012; 736():477-98. PubMed ID: 22161347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian inference of reaction kinetics from single-cell recordings across a heterogeneous cell population.
    Bronstein L; Zechner C; Koeppl H
    Methods; 2015 Sep; 85():22-35. PubMed ID: 25986935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion.
    Fröhlich F; Thomas P; Kazeroonian A; Theis FJ; Grima R; Hasenauer J
    PLoS Comput Biol; 2016 Jul; 12(7):e1005030. PubMed ID: 27447730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct cellular states determine calcium signaling response.
    Yao J; Pilko A; Wollman R
    Mol Syst Biol; 2016 Dec; 12(12):894. PubMed ID: 27979909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots.
    Marr C; Zhou JX; Huang S
    Curr Opin Biotechnol; 2016 Jun; 39():207-214. PubMed ID: 27152696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A posterior probability approach for gene regulatory network inference in genetic perturbation data.
    Young WC; Raftery AE; Yeung KY
    Math Biosci Eng; 2016 Dec; 13(6):1241-1251. PubMed ID: 27775378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.
    Llamosi A; Gonzalez-Vargas AM; Versari C; Cinquemani E; Ferrari-Trecate G; Hersen P; Batt G
    PLoS Comput Biol; 2016 Feb; 12(2):e1004706. PubMed ID: 26859137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.
    Zhang Q; Bhattacharya S; Andersen ME; Conolly RB
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):253-76. PubMed ID: 20574901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of gene regulatory networks with multi-objective cellular genetic algorithm.
    García-Nieto J; Nebro AJ; Aldana-Montes JF
    Comput Biol Chem; 2019 Jun; 80():409-418. PubMed ID: 31128452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter inference for stochastic single-cell dynamics from lineage tree data.
    Kuzmanovska I; Milias-Argeitis A; Mikelson J; Zechner C; Khammash M
    BMC Syst Biol; 2017 Apr; 11(1):52. PubMed ID: 28446158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systems biology intertwines with single cell and AI.
    Wang Y; Zhang XS; Chen L
    BMC Bioinformatics; 2019 May; 20(Suppl 7):204. PubMed ID: 31074375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks.
    Dondelinger F; Mukherjee S
    Methods Mol Biol; 2019; 1883():25-48. PubMed ID: 30547395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The MYpop toolbox: Putting yeast stress responses in cellular context on single cell and population scales.
    Spiesser T; Kühn C; Krantz M; Klipp E
    Biotechnol J; 2016 Sep; 11(9):1158-68. PubMed ID: 26952199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized method of moments for estimating parameters of stochastic reaction networks.
    Lück A; Wolf V
    BMC Syst Biol; 2016 Oct; 10(1):98. PubMed ID: 27769280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hierarchical, Data-Driven Approach to Modeling Single-Cell Populations Predicts Latent Causes of Cell-To-Cell Variability.
    Loos C; Moeller K; Fröhlich F; Hucho T; Hasenauer J
    Cell Syst; 2018 May; 6(5):593-603.e13. PubMed ID: 29730254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved constraint filtering technique for inferring hidden states and parameters of a biological model.
    Murtuza Baker S; Poskar CH; Schreiber F; Junker BH
    Bioinformatics; 2013 Apr; 29(8):1052-9. PubMed ID: 23434837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.