These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30639260)
1. Chemical Inhibition of Pre-mRNA Splicing in Living Saccharomyces cerevisiae. Hansen SR; Nikolai BJ; Spreacker PJ; Carrocci TJ; Hoskins AA Cell Chem Biol; 2019 Mar; 26(3):443-448.e3. PubMed ID: 30639260 [TBL] [Abstract][Full Text] [Related]
2. Functional analysis of Hsh155/SF3b1 interactions with the U2 snRNA/branch site duplex. Carrocci TJ; Paulson JC; Hoskins AA RNA; 2018 Aug; 24(8):1028-1040. PubMed ID: 29752352 [TBL] [Abstract][Full Text] [Related]
3. Impact of cancer-associated mutations in Hsh155/SF3b1 HEAT repeats 9-12 on pre-mRNA splicing in Saccharomyces cerevisiae. Kaur H; Groubert B; Paulson JC; McMillan S; Hoskins AA PLoS One; 2020; 15(4):e0229315. PubMed ID: 32320410 [TBL] [Abstract][Full Text] [Related]
4. SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Tang Q; Rodriguez-Santiago S; Wang J; Pu J; Yuste A; Gupta V; Moldón A; Xu YZ; Query CC Genes Dev; 2016 Dec; 30(24):2710-2723. PubMed ID: 28087715 [TBL] [Abstract][Full Text] [Related]
5. Coherence between cellular responses and in vitro splicing inhibition for the anti-tumor drug pladienolide B and its analogs. Effenberger KA; Anderson DD; Bray WM; Prichard BE; Ma N; Adams MS; Ghosh AK; Jurica MS J Biol Chem; 2014 Jan; 289(4):1938-47. PubMed ID: 24302718 [TBL] [Abstract][Full Text] [Related]
6. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Teng T; Tsai JH; Puyang X; Seiler M; Peng S; Prajapati S; Aird D; Buonamici S; Caleb B; Chan B; Corson L; Feala J; Fekkes P; Gerard B; Karr C; Korpal M; Liu X; T Lowe J; Mizui Y; Palacino J; Park E; Smith PG; Subramanian V; Wu ZJ; Zou J; Yu L; Chicas A; Warmuth M; Larsen N; Zhu P Nat Commun; 2017 May; 8():15522. PubMed ID: 28541300 [TBL] [Abstract][Full Text] [Related]
7. Herboxidiene Features That Mediate Conformation-Dependent SF3B1 Interactions to Inhibit Splicing. Gamboa Lopez A; Allu SR; Mendez P; Chandrashekar Reddy G; Maul-Newby HM; Ghosh AK; Jurica MS ACS Chem Biol; 2021 Mar; 16(3):520-528. PubMed ID: 33617218 [TBL] [Abstract][Full Text] [Related]
8. Disclosing the Impact of Carcinogenic SF3b Mutations on Pre-mRNA Recognition Via All-Atom Simulations. Borišek J; Saltalamacchia A; Gallì A; Palermo G; Molteni E; Malcovati L; Magistrato A Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31640290 [TBL] [Abstract][Full Text] [Related]
9. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. Talkish J; Igel H; Hunter O; Horner SW; Jeffery NN; Leach JR; Jenkins JL; Kielkopf CL; Ares M RNA; 2019 Aug; 25(8):1020-1037. PubMed ID: 31110137 [TBL] [Abstract][Full Text] [Related]
10. The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action. Finci LI; Zhang X; Huang X; Zhou Q; Tsai J; Teng T; Agrawal A; Chan B; Irwin S; Karr C; Cook A; Zhu P; Reynolds D; Smith PG; Fekkes P; Buonamici S; Larsen NA Genes Dev; 2018 Feb; 32(3-4):309-320. PubMed ID: 29491137 [TBL] [Abstract][Full Text] [Related]
11. Structural Basis of Splicing Modulation by Antitumor Macrolide Compounds. Cretu C; Agrawal AA; Cook A; Will CL; Fekkes P; Smith PG; Lührmann R; Larsen N; Buonamici S; Pena V Mol Cell; 2018 Apr; 70(2):265-273.e8. PubMed ID: 29656923 [TBL] [Abstract][Full Text] [Related]
12. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. Carrocci TJ; Zoerner DM; Paulson JC; Hoskins AA Nucleic Acids Res; 2017 May; 45(8):4837-4852. PubMed ID: 28062854 [TBL] [Abstract][Full Text] [Related]
13. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Kashyap MK; Kumar D; Villa R; La Clair JJ; Benner C; Sasik R; Jones H; Ghia EM; Rassenti LZ; Kipps TJ; Burkart MD; Castro JE Haematologica; 2015 Jul; 100(7):945-54. PubMed ID: 25862704 [TBL] [Abstract][Full Text] [Related]
14. Evidence that the 60-kDa protein of 17S U2 small nuclear ribonucleoprotein is immunologically and functionally related to the yeast PRP9 splicing factor and is required for the efficient formation of prespliceosomes. Behrens SE; Galisson F; Legrain P; Lührmann R Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8229-33. PubMed ID: 8367487 [TBL] [Abstract][Full Text] [Related]
15. A novel yeast U2 snRNP protein, Snu17p, is required for the first catalytic step of splicing and for progression of spliceosome assembly. Gottschalk A; Bartels C; Neubauer G; Lührmann R; Fabrizio P Mol Cell Biol; 2001 May; 21(9):3037-46. PubMed ID: 11287609 [TBL] [Abstract][Full Text] [Related]
16. The splicing factor Prp17 interacts with the U2, U5 and U6 snRNPs and associates with the spliceosome pre- and post-catalysis. Sapra AK; Khandelia P; Vijayraghavan U Biochem J; 2008 Dec; 416(3):365-74. PubMed ID: 18691155 [TBL] [Abstract][Full Text] [Related]
17. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. Yokoi A; Kotake Y; Takahashi K; Kadowaki T; Matsumoto Y; Minoshima Y; Sugi NH; Sagane K; Hamaguchi M; Iwata M; Mizui Y FEBS J; 2011 Dec; 278(24):4870-80. PubMed ID: 21981285 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of Splicing Factor 3b Subunit 1 (SF3B1) Reduced Cell Proliferation, Induced Apoptosis and Resulted in Cell Cycle Arrest by Regulating Homeobox A10 (HOXA10) Splicing in AGS and MKN28 Human Gastric Cancer Cells. Zhang Y; Yuan Z; Jiang Y; Shen R; Gu M; Xu W; Gu X Med Sci Monit; 2020 Jan; 26():e919460. PubMed ID: 31927557 [TBL] [Abstract][Full Text] [Related]
19. Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. Hasegawa M; Miura T; Kuzuya K; Inoue A; Won Ki S; Horinouchi S; Yoshida T; Kunoh T; Koseki K; Mino K; Sasaki R; Yoshida M; Mizukami T ACS Chem Biol; 2011 Mar; 6(3):229-33. PubMed ID: 21138297 [TBL] [Abstract][Full Text] [Related]
20. Herboxidiene triggers splicing repression and abiotic stress responses in plants. AlShareef S; Ling Y; Butt H; Mariappan KG; Benhamed M; Mahfouz MM BMC Genomics; 2017 Mar; 18(1):260. PubMed ID: 28347276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]