These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1042 related articles for article (PubMed ID: 30639392)
1. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related]
2. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
3. NimbleMiner: An Open-Source Nursing-Sensitive Natural Language Processing System Based on Word Embedding. Topaz M; Murga L; Bar-Bachar O; McDonald M; Bowles K Comput Inform Nurs; 2019 Nov; 37(11):583-590. PubMed ID: 31478922 [TBL] [Abstract][Full Text] [Related]
4. Extracting Alcohol and Substance Abuse Status from Clinical Notes: The Added Value of Nursing Data. Topaz M; Murga L; Bar-Bachar O; Cato K; Collins S Stud Health Technol Inform; 2019 Aug; 264():1056-1060. PubMed ID: 31438086 [TBL] [Abstract][Full Text] [Related]
5. Identifying Diabetes in Clinical Notes in Hebrew: A Novel Text Classification Approach Based on Word Embedding. Topaz M; Murga L; Grossman C; Daliyot D; Jacobson S; Rozendorn N; Zimlichman E; Furie N Stud Health Technol Inform; 2019 Aug; 264():393-397. PubMed ID: 31437952 [TBL] [Abstract][Full Text] [Related]
6. Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing. Sivarajkumar S; Tam TYC; Mohammad HA; Viggiano S; Oniani D; Visweswaran S; Wang Y J Am Med Inform Assoc; 2024 Oct; 31(10):2217-2227. PubMed ID: 39001795 [TBL] [Abstract][Full Text] [Related]
7. Speculation detection for Chinese clinical notes: Impacts of word segmentation and embedding models. Zhang S; Kang T; Zhang X; Wen D; Elhadad N; Lei J J Biomed Inform; 2016 Apr; 60():334-41. PubMed ID: 26923634 [TBL] [Abstract][Full Text] [Related]
8. NimbleMiner: A Novel Multi-Lingual Text Mining Application. Topaz M Stud Health Technol Inform; 2019 Aug; 264():1608-1609. PubMed ID: 31438255 [TBL] [Abstract][Full Text] [Related]
9. Detecting negation and scope in Chinese clinical notes using character and word embedding. Kang T; Zhang S; Xu N; Wen D; Zhang X; Lei J Comput Methods Programs Biomed; 2017 Mar; 140():53-59. PubMed ID: 28254090 [TBL] [Abstract][Full Text] [Related]
10. General Symptom Extraction from VA Electronic Medical Notes. Divita G; Luo G; Tran LT; Workman TE; Gundlapalli AV; Samore MH Stud Health Technol Inform; 2017; 245():356-360. PubMed ID: 29295115 [TBL] [Abstract][Full Text] [Related]
11. Unveiling Fall Risk Factors: Nurse-Driven Corpus Development for Natural Language Processing. Bjarnadottir RI; Wu Y; Snigurska UA; Ser SE; Solberg LM; Martinez KA; Bolin S; Dwarica SE; Dunn E; Duckworth LJD; Lou C; Paredes DJ; Yu Z; Lucero RJ Stud Health Technol Inform; 2024 Jul; 315():373-378. PubMed ID: 39049286 [TBL] [Abstract][Full Text] [Related]
12. Extracting important information from Chinese Operation Notes with natural language processing methods. Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562 [TBL] [Abstract][Full Text] [Related]
13. Combining unsupervised, supervised and rule-based learning: the case of detecting patient allergies in electronic health records. Berge GT; Granmo OC; Tveit TO; Ruthjersen AL; Sharma J BMC Med Inform Decis Mak; 2023 Sep; 23(1):188. PubMed ID: 37723446 [TBL] [Abstract][Full Text] [Related]
14. A clinical text classification paradigm using weak supervision and deep representation. Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584 [TBL] [Abstract][Full Text] [Related]
15. Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision. Shen Z; Schutte D; Yi Y; Bompelli A; Yu F; Wang Y; Zhang R BMC Med Inform Decis Mak; 2022 Jul; 22(Suppl 1):88. PubMed ID: 35799294 [TBL] [Abstract][Full Text] [Related]
16. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698 [TBL] [Abstract][Full Text] [Related]
18. Classifying the Indication for Colonoscopy Procedures: A Comparison of NLP Approaches in a Diverse National Healthcare System. Patterson OV; Forbush TB; Saini SD; Moser SE; DuVall SL Stud Health Technol Inform; 2015; 216():614-8. PubMed ID: 26262124 [TBL] [Abstract][Full Text] [Related]
19. Identifying Patients with Depression Using Free-text Clinical Documents. Zhou L; Baughman AW; Lei VJ; Lai KH; Navathe AS; Chang F; Sordo M; Topaz M; Zhong F; Murrali M; Navathe S; Rocha RA Stud Health Technol Inform; 2015; 216():629-33. PubMed ID: 26262127 [TBL] [Abstract][Full Text] [Related]
20. A comparison of rule-based and machine learning approaches for classifying patient portal messages. Cronin RM; Fabbri D; Denny JC; Rosenbloom ST; Jackson GP Int J Med Inform; 2017 Sep; 105():110-120. PubMed ID: 28750904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]