These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30639662)

  • 1. Nanocellulose for gel electrophoresis.
    Mendoza L; Gunawardhana T; Batchelor W; Garnier G
    J Colloid Interface Sci; 2019 Mar; 540():148-154. PubMed ID: 30639662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective.
    Mendoza L; Batchelor W; Tabor RF; Garnier G
    J Colloid Interface Sci; 2018 Jan; 509():39-46. PubMed ID: 28881204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fibre dimension and charge density on nanocellulose gels.
    Mendoza L; Gunawardhana T; Batchelor W; Garnier G
    J Colloid Interface Sci; 2018 Sep; 525():119-125. PubMed ID: 29689416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers.
    Stellwagen NC
    Electrophoresis; 1998 Jul; 19(10):1542-7. PubMed ID: 9719523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamentals of Capillary Electrophoretic Migration and Separation of SDS Proteins in Borate Cross-Linked Dextran Gels.
    Guttman A; Filep C; Karger BL
    Anal Chem; 2021 Jul; 93(26):9267-9276. PubMed ID: 34165952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation.
    Mendoza DJ; Hossain L; Browne C; Raghuwanshi VS; Simon GP; Garnier G
    Carbohydr Polym; 2020 Oct; 245():116566. PubMed ID: 32718648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylated nanocellulose foams as superabsorbents.
    Mendoza L; Hossain L; Downey E; Scales C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2019 Mar; 538():433-439. PubMed ID: 30530081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocellulose Hydrogel for Blood Typing Tests.
    Curvello R; Mendoza L; McLiesh H; Manolios J; Tabor RF; Garnier G
    ACS Appl Bio Mater; 2019 Jun; 2(6):2355-2364. PubMed ID: 35030728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and swelling of cross-linked nanocellulose foams.
    Hossain L; Raghuwanshi VS; Tanner J; Wu CM; Kleinerman O; Cohen Y; Garnier G
    J Colloid Interface Sci; 2020 May; 568():234-244. PubMed ID: 32092552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing highly fibrillated nanocellulose by modifying the gel point methodology.
    Sanchez-Salvador JL; Monte MC; Batchelor W; Garnier G; Negro C; Blanco A
    Carbohydr Polym; 2020 Jan; 227():115340. PubMed ID: 31590859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discontinuous buffer system for polyacrylamide and agarose gel electrophoresis of DNA fragments.
    Orbán L; Chrambach A
    Electrophoresis; 1991 Apr; 12(4):233-40. PubMed ID: 2070779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Procedures and computer program for deriving the Ferguson plot from electrophoresis in a single pore gradient gel: application to agarose gel and a polystyrene particle.
    Tietz D; Gombocz E; Chrambach A
    Electrophoresis; 1991 Oct; 12(10):710-21. PubMed ID: 1802689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties and foaming of plant cell wall polysaccharide dispersions.
    Beatrice CAG; Rosa-Sibakov N; Lille M; Sözer N; Poutanen K; Ketoja JA
    Carbohydr Polym; 2017 Oct; 173():508-518. PubMed ID: 28732894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological behavior of nanocellulose gels at various calcium chloride concentrations.
    Qu RJ; Wang Y; Li D; Wang LJ
    Carbohydr Polym; 2021 Nov; 274():118660. PubMed ID: 34702479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the counter-ion on nanocellulose hydrogels and their superabsorbent structure and properties.
    Barajas-Ledesma RM; Hossain L; Wong VNL; Patti AF; Garnier G
    J Colloid Interface Sci; 2021 Oct; 599():140-148. PubMed ID: 33933789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalously slow electrophoretic mobilities of DNA restriction fragments in polyacrylamide gels are not eliminated by increasing the gel pore size.
    Stellwagen A; Stellwagen NC
    Biopolymers; 1990; 30(3-4):309-24. PubMed ID: 2177663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The number of neurophysins in the rat. Influence of the concentration of Bromophenol Blue, used as a tracking dye, on the resolution of proteins by polyacrylamide-gel electrophoresis.
    Burford GD; Pickering BT
    Biochem J; 1972 Jul; 128(4):941-4. PubMed ID: 4638797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional SDS gel electrophoresis of proteins.
    Gallagher SR
    Curr Protoc Mol Biol; 2006 Aug; Chapter 10():Unit 10.2A. PubMed ID: 18265373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.