BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30639696)

  • 1. Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites.
    Chen Z; He N; Huang Y; Qin WT; Liu X; Li L
    Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):451-459. PubMed ID: 30639696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences.
    Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features.
    Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y
    J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Method for Identifying Malonylation Sites by Using Random Forest Algorithm.
    Wang S; Li J; Sun X; Zhang YH; Huang T; Cai Y
    Comb Chem High Throughput Screen; 2020; 23(4):304-312. PubMed ID: 30588879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Lysine Malonylation Sites Based on Pseudo Amino Acid.
    Xiang Q; Feng K; Liao B; Liu Y; Huang G
    Comb Chem High Throughput Screen; 2017; 20(7):622-628. PubMed ID: 28292251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites.
    Al-Barakati H; Thapa N; Hiroto S; Roy K; Newman RH; Kc D
    Comput Struct Biotechnol J; 2020; 18():852-860. PubMed ID: 32322367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BERMP: a cross-species classifier for predicting m
    Huang Y; He N; Chen Y; Chen Z; Li L
    Int J Biol Sci; 2018; 14(12):1669-1677. PubMed ID: 30416381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mini-review: Recent advances in post-translational modification site prediction based on deep learning.
    Meng L; Chan WS; Huang L; Liu L; Chen X; Zhang W; Wang F; Cheng K; Sun H; Wong KC
    Comput Struct Biotechnol J; 2022; 20():3522-3532. PubMed ID: 35860402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid feature extraction scheme for efficient malonylation site prediction.
    Sorkhi AG; Pirgazi J; Ghasemi V
    Sci Rep; 2022 Apr; 12(1):5756. PubMed ID: 35388017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepCSO: A Deep-Learning Network Approach to Predicting Cysteine S-Sulphenylation Sites.
    Lyu X; Li S; Jiang C; He N; Chen Z; Zou Y; Li L
    Front Cell Dev Biol; 2020; 8():594587. PubMed ID: 33335901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating hybrid models into lysine malonylation sites prediction on mammalian and plant proteins.
    Chung CR; Chang YP; Hsu YL; Chen S; Wu LC; Horng JT; Lee TY
    Sci Rep; 2020 Jun; 10(1):10541. PubMed ID: 32601280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic analysis of the lysine malonylome in common wheat.
    Liu J; Wang G; Lin Q; Liang W; Gao Z; Mu P; Li G; Song L
    BMC Genomics; 2018 Mar; 19(1):209. PubMed ID: 29558883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.
    Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD
    Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SEMal: Accurate protein malonylation site predictor using structural and evolutionary information.
    Dipta SR; Taherzadeh G; Ahmad MW; Arafat ME; Shatabda S; Dehzangi A
    Comput Biol Med; 2020 Oct; 125():104022. PubMed ID: 33022522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Transfer Learning-Based Approach for Lysine Propionylation Prediction.
    Li A; Deng Y; Tan Y; Chen M
    Front Physiol; 2021; 12():658633. PubMed ID: 33967828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.
    Qian L; Nie L; Chen M; Liu P; Zhu J; Zhai L; Tao SC; Cheng Z; Zhao Y; Tan M
    J Proteome Res; 2016 Jun; 15(6):2060-71. PubMed ID: 27183143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.