BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30639696)

  • 21. DeepKhib: A Deep-Learning Framework for Lysine 2-Hydroxyisobutyrylation Sites Prediction.
    Zhang L; Zou Y; He N; Chen Y; Chen Z; Li L
    Front Cell Dev Biol; 2020; 8():580217. PubMed ID: 33015075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially.
    Mujahid H; Meng X; Xing S; Peng X; Wang C; Peng Z
    J Proteomics; 2018 Jan; 170():88-98. PubMed ID: 28882676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning.
    Jia X; Zhao P; Li F; Qin Z; Ren H; Li J; Miao C; Zhao Q; Akutsu T; Dou G; Chen Z; Song J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36880172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network.
    Wang H; Zhao H; Yan Z; Zhao J; Han J
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34208298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection.
    Xu Y; Ding YX; Ding J; Wu LY; Xue Y
    Sci Rep; 2016 Dec; 6():38318. PubMed ID: 27910954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A chemical probe for lysine malonylation.
    Bao X; Zhao Q; Yang T; Fung YM; Li XD
    Angew Chem Int Ed Engl; 2013 Apr; 52(18):4883-6. PubMed ID: 23533089
    [No Abstract]   [Full Text] [Related]  

  • 27. Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations.
    Agajanian S; Oluyemi O; Verkhivker GM
    Front Mol Biosci; 2019; 6():44. PubMed ID: 31245384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DeepNphos: A deep-learning architecture for prediction of N-phosphorylation sites.
    Chang X; Zhu Y; Chen Y; Li L
    Comput Biol Med; 2024 Mar; 170():108079. PubMed ID: 38295472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo profile generation based on sequence context specificity with the long short-term memory network.
    Yamada KD; Kinoshita K
    BMC Bioinformatics; 2018 Jul; 19(1):272. PubMed ID: 30021530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites.
    Long H; Liao B; Xu X; Yang J
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Malonylome Analysis Reveals the Involvement of Lysine Malonylation in Metabolism and Photosynthesis in Cyanobacteria.
    Ma Y; Yang M; Lin X; Liu X; Huang H; Ge F
    J Proteome Res; 2017 May; 16(5):2030-2043. PubMed ID: 28365990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions.
    Fan B; Li YL; Li L; Peng XJ; Bu C; Wu XQ; Borriss R
    J Proteomics; 2017 Feb; 154():1-12. PubMed ID: 27939684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method.
    Lv H; Dao FY; Guan ZX; Yang H; Li YW; Lin H
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33099604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning.
    Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Positive-Unlabeled Learning for Pupylation Sites Prediction.
    Jiang M; Cao JZ
    Biomed Res Int; 2016; 2016():4525786. PubMed ID: 27579315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Entity recognition from clinical texts via recurrent neural network.
    Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mal-Light: Enhancing Lysine Malonylation Sites Prediction Problem Using Evolutionary-based Features.
    Ahmad W; Arafat E; Taherzadeh G; Sharma A; Dipta SR; Dehzangi A; Shatabda S
    IEEE Access; 2020; 8():77888-77902. PubMed ID: 33354488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.